

Flash Game Development by
Example

Build 9 classic Flash games and learn game
development along the way

Emanuele Feronato

BIRMINGHAM - MUMBAI

Flash Game Development by Example

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2011

Production Reference: 1150311

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849690-90-4

www.packtpub.com

Cover Image by Charwak (charwak86@gmail.com)

Credits

Author
Emanuele Feronato

Reviewers
Jon Borgonia

Robin Palotai

Tarwin Stroh-Spijer

Acquisition Editor
David Barnes

Development Editor
Roger D'souza

Technical Editor
Arun Nadar

Indexers
Rekha Nair

Monica Ajmera Mehta

Editorial Team Leader
Aditya Belpathak

Project Team Leader
Lata Basantani

Project Coordinator
Vishal Bodwani

Proofreader
Mario Cecere

Graphics
Geetanjali G. Sawant

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Emanuele Feronato has been studying programming languages since the early
eighties, with a particular interest in web and game development. He taught online
programming for the European Social Fund and now owns a web development
company in Italy where he works as a lead programmer.

As a game developer, he developed Flash games sponsored by the biggest game
portals and played more than 50 million times.

As a writer, he worked as technical reviewer for Packt Publishing.

His blog, www.emanueleferonato.com, is one of the most visited blogs about indie
programming.

I would like to thank the guys at Packt Publishing for giving me the
opportunity to write this book.

Special thanks go to David Barnes for believing in this project, and to
Vishal Bodwani and Arun Nadar, along with the technical reviewers,
for dealing with my drafts and my ugly English.

A big "thank you" goes to my blog readers and to my Facebook fans
for appreciating my work and giving me the will to write more and
more.

I would also mention Ada Chen from Mochi Media. I made my first
Flash game after getting in touch by e-mail with her, so she has an
important role in the making of this book.

Finally I want to thank my wife Kirenia, for being patient while I
was writing the book late at night.

This book is dedicated to my little daughter Kimora, who always
strokes random keys on my computer. The legend says most of my
scripts were born this way.

I love you "bambina squalo".

About the Reviewers

Jon Borgonia is a Level 28 programmer. He hails from his home base, Goma Games,
located on the remote Pacific island of Oahu. Jon lives and breathes games and in
the few moments when he is neither playing nor programming, he enthusiastically
discusses game design, game theory, and game addiction with his fellow teammates.

Through Goma Games, Jon has developed many mini-games for the Flash platform
using haXe technology. Some titles he has released include Polyn, Santa's Sack,
Thanksgiving Kitchen Hero, Jet-Pack Turkey of Tomorrow, and 10-10-10.

By developing fun and original games, Jon's vision is to inspire people to respect
video games as a creative interactive art. He strives to create an experience that
evokes real-world change.

Thank you Kelli, you are the light that emanates from the fire of my
being. Thank you for putting lines and fills on the games we make.
Thank you Will, for being my best friend to laugh, cry, and build
castles with in the sandbox of our lives. Thank you Jesse, for being
the active ingredient for our creativity with your new ideas and fresh
perspective. Thank you friends and family, for your unconditional
love and tolerance for my fanatic addiction for games. Finally, thank
you Keith, for letting me win MVC2 a few times.

Robin Palotai enjoys developing flash games and utilities using haXe and
ActionScript3. He is one of the authors of SamHaXe, an open-source SWF resource
library assembler tool. He also runs TreeTide.com, providing interesting tools and
articles for flash game developers.

Tarwin is a self-taught programmer (unless having his dad excitably explain what
and how amazing DBase2 is) who loves the power that programming brings him,
especially when used along with the WWW. He has worked as a freelance web
designer and developer for almost 15 years. He also worked as a DVD author but
was saved from that by the insistence of a university mate with whom he started
Touch My Pixel.

Back in 1997, on Flash 2, Tarwin started to hack around in Flash after seeing the
(at the time) amazing Future Splash—The Simpsons (r) website.

Tarwin has also taught Multimedia Design at Monash University in Melbourne,
Australia and been part of small creating interactive artwork, some of which has
been displayed internationally at the Taiwan Biennale, 2008, and another which
won the prestigious Queensland Premiere's prize in 2010.

Thanks to my parents who let me pursue my own work, even
though it wasn't a "real job", thanks to my peers for always pushing
me to do better, and thanks for those close to me who put up with
my workaholic nature. I promise I'll spend more time with you!

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt
Copy and paste, print and bookmark content
On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

•
•
•

Table of Contents
Preface 1
Chapter 1: Concentration 7

Defining game design 8
Setting stage size, frame rate, and background color 9
Welcome to Concentration ("Hello World") 12
Creating the tiles 15
Adding randomness: shuffling the tiles 18
Placing the tiles on stage 22
Picking tiles 26
Checking for matching tiles 29
Making the player see what happened 33
Preventing the player from cheating 37
Fine-tuning the game: adding educational content 39
Summary 41
Where to go now 41

Chapter 2: Minesweeper 43
Defining game design 44
Creating the empty field 44
Placing the mines 47
Adding the digits 50
Optimization needed 53
Placing tiles on stage 56
Showing tile contents 63
Auto showing adjacent empty tiles 65
Flagging tiles 68
Timer and game over 70

Table of Contents

[ii]

No sudden death 72
Summary 74
Where to go now 75

Chapter 3: Connect Four 77
Defining game design 78
The game field 78
Showing smooth animations 79
Splitting the code 80
Adding the board 81
Placing the board to stage 82
Creating more classes 84
Placing the disc 86
Moving the disc 89
Applying game rules 93
Checking for possible columns 94
It's raining discs 95
Determining a cell value (if any) 96
Making your move 97
Waiting for the disc to be added to stage 98
Checking for victory 100
Animating discs 104
The animation itself 105
Making computer play 107
Unleashing CPU power 108
Playing with AI: defensive play 109
Summary 113
Where to go now 113

Chapter 4: Snake 115
Defining game design 116
Array-based games versus Movie Clip-based games 117
Preparing the field 117
Drawing the graphics 117
Placing the snake 119
The snake itself 120
Simplifying the code 123
Letting the snake move 124
Controlling the snake 130
Placing fruits 132
Eating fruits 137

Table of Contents

[iii]

Making the snake grow 139
Placing walls 140
Making the snake die 142
Summary 146
Where to go now 146

Chapter 5: Tetris 147
Defining game design 147
Importing classes and declaring first variables 148
Drawing game field background 149
Drawing a better game field background 152
Creating the tetrominoes 153
Placing your first tetromino 156
Moving tetrominoes horizontally 161
Moving tetrominoes down 164
Managing tetrominoes landing 166
Managing tetrominoes collisions 169
Rotating tetrominoes 170
Removing completed lines 173
Managing remaining lines 175
Making tetrominoes fall 177
Checking for game over 179
Showing NEXT tetromino 180
Summary 183
Where to go now 183

Chapter 6: Astro-PANIC! 185
Defining game design 185
Creating the game and drawing the graphics 186
Adding and controlling the spaceship 187
Adding a glow filter 188
Making spaceship fire 189
Making the bullet fly 191
Adding enemies 193
Moving enemies 194
Being killed by an enemy 199
Killing an enemy 200
Killing an enemy—for good 201
Killing an enemy—with style 203
Advancing levels 205
Managing current score and high score 207

Table of Contents

[iv]

Saving data on your local computer 209
Summary 212
Where to go now 212

Chapter 7: Bejeweled 213
Creating documents and objects 214
Placing the gems 215
Placing the gems for real 217
Selecting a gem 221
Preparing to swap gems 223
Swapping gems 226
Swapping gems for real 229
Selecting which gems to remove 231
Removing gems 233
Making gems fall 235
Adding new gems 238
Dealing with combos 239
Giving hints 241
Summary 243
Where to go now 243

Chapter 8: Puzzle Bobble 245
Creating documents and assets 246
Placing and moving the cannon 247
Drawing the game field 250
Drawing the game field with alternate rows 252
Drawing the game field according to Pythagoras 254
Loading the cannon with a bubble 255
Firing the bubble 257
Letting bubble bounce and stop 260
Adjusting bubble position and reloading 261
Allowing bubbles to stack 263
Detecting bubble chains 267
Removing the chain 272
Removing unlinked bubbles 274
Summary 279
Where to go now 279

Table of Contents

[v]

Chapter 9: BallBalance 281
Creating files and assets 282
Adding the balance 283
Choosing where to drop spheres 284
Dropping the spheres 288
Stacking spheres 292
Removing spheres 298
Adjusting floating spheres 299
Moving the balance 302
Summary 304
Where to go now 304

Appendix: Where to Go Now 305
Index 307

Preface
With the Flash games market in continuous expansion, it's no surprise more and
more developers are putting their efforts into the creation of Flash games. Anyway,
what makes Flash games development different from other kinds of casual
game development is the budget required to make it a commercial success.

There are a lot of indie developers building games in their spare time and turning
their passion into an income source, which in some cases becomes a full time, well
paid job.

Being able to develop quick and fun Flash games is also a skill more and more
required by employers, and with this scope comes this book: teaching you how
to develop indie Flash games.

Dissecting and replicating games that made the history of video games, we'll
see how easy it is to create a funny Flash game even if you are a one man
development studio.

What this book covers
Chapter 1, Concentration is the simplest game ever that can be made with just an array
and limited user interaction.

Chapter 2, Minesweeper is a game that can be made with an array, but shows more
interesting features such as recursive functions.

Chapter 3, Connect Four is an array-based game with more complex rules and a basic
artificial intelligence to make the computer play against a human.

Chapter 4, Snake is also a keyboard interaction game with simple rules but now it's
a real time game, the snake never stops so the game doesn't just sit and wait for
player inputs.

Preface

[2]

Chapter 5, Tetris is the most difficult game, featuring timers, player inputs,
multi-dimension arrays, and actors with different shapes.

Chapter 6, Astro-PANIC! is a shooter game with virtually infinite levels of increasing
difficulty and a complete score and high score system.

Chapter 7, Bejeweled is a modern blockbuster with combos and a basic artificial
intelligence to give the player hints about the game.

Chapter 8, Puzzle Bobble is a match 3 game played on a non-orthogonal game field,
which can also be played in multiplayer.

Chapter 9, BallBalance is a game I made from scratch; it's not complex but had decent
success, and will show you how to make an original game.

Sokoban (online: https://www.packtpub.com/sites/default/files/
0904_Sokoban.pdf) is a game where even more complex rules, keyboard
interaction, different levels, and the "undo" feature makes it a benchmark for
every programmer.

What you need for this book
Flash CS4 or CS5 is required for this book. You can download a free 30 days
evaluation version at http://www.adobe.com/products/flash/whatisflash/.

Who this book is for
AS3 developers who want to know quick and dirty techniques to create
Flash games
Flash animators who want to learn how to create games from their works
with AS3
Programmers who know languages different than AS3 and want to learn AS3
to make something more interesting and fun than the old "phone book"
Even if you aren't a programmer, but you love Flash games, you can count
on this book: you will be guided step by step with clear examples and the
support of the full source code of every game

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

•

•

•

•

Preface

[3]

Code words in text are shown as follows: "There is a call to a new function called
placeDisc with an argument."

A block of code is set as follows:

package {
 import flash.display.Sprite;
 public class board_movieclip extends Sprite {
 public function board_movieclip() {
 x=105;
 y=100;
 }
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public function Main() {
 prepareField();
 placeBoard();
 placeDisc(Math.floor(Math.random()*2)+1);
}

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Create a
new file (File | New) then from New Document window select Actionscript 3.0".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[4]

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

Preface

[5]

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Concentration
Concentration is a memory game you can play even without a computer, just with
a deck of cards. Shuffle the cards, lay them face down on a table and at each turn
choose and flip any two cards with faces up.

If they match (both cards are Aces, Twos, Threes, and so on), remove them from the
table. If not, lay them face down again and pick another couple of cards. The game
is completed when, due to successful matches, all cards have been removed from
the table.

Concentration can be played as a solitaire or by any number of players. In this case
the winner is the one who removed the most cards.

In this chapter you will create a complete Concentration game from scratch, with a
step-by-step approach, learning these basics:

Creating a Flash document
Working with packages, classes, and functions
Printing text
Commenting your code
Creating and managing variables and constants
Creating and managing arrays
Generating and rounding random numbers to simulate the shuffle of a deck
of cards
Repeating the execution of code a given amount of times with the for loop
Creating Movie Clips to be added with AS3 and interacting with them on
the fly
Handling mouse clicks
Dealing with timers

It's a lot of stuff, but don't worry as the whole process is easier than you can imagine.

•
•
•
•
•
•
•

•
•

•
•

Concentration

[8]

Defining game design
Once you start thinking about programming a game, you are already making it. You
are in pre-production stage.

During this process, gameplay as well as storyline and environment begin to take
shape. Before starting to code or even turning on the computer, it's very important
to define the game design. This is the step in which you will decide how the game
will work, the rules and the goals of the game, as well as the amount of options and
features to include.

I know you just want to start coding, but underestimating the importance of game
design is a very common error. Usually we think we have everything in mind, and
we want to start coding at once. Moreover, a game like Concentration looks really
simple, with just one basic rule (selected cards match/don't match) and, last but not
least, we just have to copy an existing game, so why not start typing right now?

Even a basic project like a Concentration remake may give you some troubles if you
skip an accurate game design. Here are a few questions you probably would not ask
yourself about the game you are about to make:

How many players can take part in the game?
How many cards will be placed on the table?
I don't have a deck of cards. Do I have to buy one and scan all the cards?
Are card images protected by copyright?
Where can I find free card images?
Which resolution should I use to clearly display all cards?
Who will play my game?
What difficulty levels can the player choose?
Will there be any background music or sound effects?

Don't hesitate to ask yourself as many questions as you can. The more decisions you
take now, the easier the game will be to make.

Making changes to basic mechanics when the game is on an advanced development
stage can dramatically increase developing time. A good game design won't ensure
you that you will never have to rewrite some parts of the code, but it reduces the
probability of you having to do it.

•

•

•

•

•

•

•

•

•

Chapter 1

[9]

Anyway, be realistic and know your limits. Questions like "Do I have to use a
physics engine to add realism to card flipping, maybe introducing wind or different
air resistance" are welcome since you don't want to start doing this and then realize
it's not needed, but avoid thinking about features you know you aren't able to add or
you will quickly turn a game you are about to publish into a game you'll never make.

At the end of this process, you must have at least a set of basic rules to define how a
playable prototype should work.

So here are the decisions I made for the game we will create:

To be played in solitaire mode.
The game is intended to be played on a web browser by young children.
Twenty cards placed on the table. Being for young children, a complete deck
of cards could be too difficult.
Rather than the classic deck of cards, we'll use tiles with primitive colored
shapes on them, such as a red circle, a green square and so on. This will let us
draw the graphics on our own, without needing a card deck.
Player will select the cards with a mouse click.

Defining the audience of a game is very important when you are about to fine-tune
the game. Being a game for young children, we'll add some educational content in it.
Parents love when their children play and learn at the same time.

Setting stage size, frame rate, and
background color
You are about to create a Flash game, and like all Flash movies, it will have its stage
size (width and height in pixels), frame rate (the number of frames per second) and a
background color.

The area where you will add the content to be viewed is called the stage.
Any content outside the stage will not be visible when playing the game.

The higher the size and the frame rate, the more CPU-intensive will be the game. But
it's not just a CPU-based issue: you also have to set the size according to the device
your game is designed to be played in. If you plan to design a Concentration game
for smartphones, then a 1280x1024 size is probably a bad choice, because they don't
support that kind of resolution.

•

•

•

•

•

Concentration

[10]

Although we have decided to create a game to be played in browsers we should still
put some effort into thinking about what size it should be.

Flash games are mostly played on famous game portals such as Kongregate
(www.kongregate.com) or Armor Games (www.armorgames.com), that give players
a wide choice of quality games. Since the games are embedded in web pages, they
must fit in a pre-built layout, so you can't make your game as wide and tall as you
want because most portals won't just pick it up and you won't be able to see your
game being played by thousands of players.

As you can see from the picture, the game is not the only content of the page, but it's
carefully embedded in a complex layout. There may be login forms, advertising, chat
rooms, and so on.

A common error is thinking the bigger the game size, the better the graphics and
the more information you can show. A good designer can make everything fit in
small resolutions. A PSP console has a 480x272 resolution and a Nintendo DS has
a 256x384 resolution split in two. Both consoles have awesome games.

Chapter 1

[11]

Play some successful games in various Flash game portals, and you'll see
the most used sizes are 550x400 and 640x480. The former is the size we'll
use for the game.

Run Adobe Flash and create a new file (File | New) then from New Document
window select Actionscript 3.0.

Once we create a document the first thing we should do is set its properties. Open
Properties window (Window | Properties) and you'll probably see stage size is
already 550x400, because it's Flash's default movie size. Click Edit button to see
Document Settings window. If you don't already have these values by default, set
width to 550px, height to 400px, background color to #FFFFFF (white) and frame
rate to 24. A higher frame rate means smoother animations, but also a higher CPU
consumption. In this game we don't use animations, so I just left the frame rate to its
default value.

You will also need to define the Document Class. Call it Main and you will probably
see this alert:

Don't worry: Flash is warning you just set the main document class for the current
movie, but it couldn't find a file with such class. Warm up your fingers, because it's
time to code.

Concentration

[12]

Now your Properties window should look like this:

The white area in the background is the stage itself.

Your Flash document is now ready to turn into a Concentration game.

Save the file (File | Save) and name it as concentration.fla then let's code
Main class.

Welcome to Concentration
("Hello World")
At this time we just want to make sure things are working, so we are only writing
some text. It's the first script of our first project, so it's a huge step anyway.

Without closing concentration.fla, create a new file and from New Document
window select ActionScript 3.0 Class.

You should be brought to an empty text file. If you are using Flash CS5 you'll get a
box asking for the class name. Type in Main, then delete the default script in the text
file and start coding:

package {
 // importing classes
 import flash.display.Sprite;
 // end of importing classes
 public class Main extends Sprite {

Chapter 1

[13]

 public function Main() {
 trace("Welcome to Concentration");
 }
 }
}

Save the file as Main.as in the same path where you saved concentration.fla.

At this time the content of your project folder should look like this:

As you can see, Main is repeated a lot, from the name of the document class to the
name of the file you just saved.

Now it's time to test the movie (Control | Test Movie). You will see the blank stage
but in the output window (Window | Output) you will see:

Welcome to Concentration

You just made your first class work. At this time you may think AS3 may not be the
best language for game development as it took eight lines to do what can be easily
done in other languages, such as PHP or Javascript, in just a single line. But you
didn't just write "Welcome to Concentration". You defined the package, the class,
and the main function of the game in just eight lines. It sounds different, doesn't it?

Let's see how it works:

package indicates that the following block of code (everything between { and }) is a
package of classes and functions.

package usually is followed by a name such as package com.packagename to ensure
class name uniqueness in large libraries programmers want to distribute. Since the
creation of libraries for distribution is not the topic of this book, just remember to
add package { to the first line and close it with } in the last line.

import flash.display.Sprite;

Imports Sprite built-in class for later use. This class allows us to display
graphics. flash.display.Sprite means we are importing Sprite class
from flash.display package.

public class Main extends Sprite { ...}

Concentration

[14]

This defines the main class of this file (called Main). extends means the class will be
built based upon Sprite class. Basically we are adding new functionalities to Sprite
class. This class must be set as public so don't worry about it at the moment. You
have no choice.

Throughout the book you will find a lot of "three points" (…).
They mean the rest of the code has not been changed.

Once the class has been defined, we have to create the constructor. It's a function
that is called when a new class is created, in this case when the project is run. The
constructor must have the same name of the class.

public function Main() {...}

Defines the constructor function of the class. This must be set as public as well.

trace() will show any value you pass in the output window when the movie is
executed in the Flash environment. It will become your best friend when it's time to
debug. This time, displaying "Welcome to Concentration" in the output window, it
will let you know everything worked fine with your class.

Congratulations. You just learned how to:

Decide which size your game should be.
Create and set up a Flash movie.
Code, test, and debug a working class.

At this time you had a brief introduction to classes, constructors, and functions, but
that was enough to let you create and set up a Flash movie, as well as testing and
printing text on the debug window.

Also notice there are comments around the code. Commenting the code is almost
as important as coding itself, because good comments explain what your script is
supposed to do and can help to remind you what the code is meant to be doing,
especially when you aren't working on the script for a while. Also, during this book,
you'll be asked to insert or modify parts of scripts identified by comments (that is
"delete everything between // here and // there") so it's recommended you use
the same comments you find in the book.

You can comment your code with either single line or block comments.

A single line comment starts with two slashes //, and lasts until the end of the line.
The compiler will ignore everything after the //.

trace("Welcome") // I am an inline comment

•

•

•

Chapter 1

[15]

A block comment starts with /* marker and ends with */ marker. The compiler will
ignore everything between the markers.

/* I am

a multi-line

block comment */

Now it's time to start the real development of the game.

Creating the tiles
As said, we won't use a standard card deck, but tiles with basic shapes on them.
We can place any number of tiles, as long as it's an even number, because any tile
must have its match. So, if you want to play with ten symbols, you must have
20 tiles in game.

That's exactly what we are going to do. We will create twenty tiles, each one
represented by a number from 0 to 9. Since there are two tiles for each value,
we will have two zeros, two ones, two twos, and so on until two nines.

Now you may wonder: why are we representing ten tiles with numbers from 0 to 9?
Wouldn't it be better to use the classic 1-10 range? Obviously representing numbers
from 1 to 10 seems more meaningful, but keep in mind when you code you should
always start counting from zero.

You may also wonder why we are defining tile values with numbers when we
decided to use shapes. Think about a Flash game as if it were a movie. In a movie,
you see what the director wants you to see. But there is a lot of stuff you will never
see, although it is part of the show. Let's take a car chase: you see two cars running
fast along a freeway because the director wanted you to see them. What you don't
see are cameras, microphones, mixers, storyboards, safety belts, make-up artists,
and so on. You only see what the camera filmed.

A game works in the same way; the player will see what happens on the stage,
but he won't see what happens behind the 'scenes', and now we are working
behind the scene.

Change Main function this way:

public function Main() {
 // variables and constants
 const NUMBER_OF_TILES:uint=20;
 var tiles:Array=new Array();
 // end of variables and constants

Concentration

[16]

 // tiles creation loop
 for (var i:uint=0; i<NUMBER_OF_TILES; i++) {
 tiles.push(Math.floor(i/2));
 }
 trace("My tiles: "+tiles);
 // end of tiles creation loop
}

Test the movie and in the output window trace(tiles)will print:

My tiles: 0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9

Let's see what we have done:

First, we created a constant called NUMBER_OF_TILES.

In AS3, you can declare constants and variables. A constant represents a value
that will never change during the script. A real world example of a constant is the
number of minutes in an hour. No matter how you are using minutes in your code,
you will always have 60 minutes in an hour. A variable holds information that may
change during the execution of the script. Referring to previous example, the amount
of minutes I play Flash games each day changes according to the amount of my
spare time.

Since the number of tiles will never change during the game, we defined it
as a constant. But we need to give a better definition to our constant. We
know NUMBER_OF_TILES is a number that can only be positive. That is, an
unsigned integer.

AS3 provides three ways to define a number.

int—represents an integer that can be positive or negative, called signed
integer.
uint—an unsigned integer that is used to represent numbers that can only
be positive.
Number—(uppercase "N") is used to represent whole and fractional numbers,
no matter if positive or negative. You can use it if you are unsure about
int/uint, anyway you should always know which values could be stored
in a variable.

As you can see, I named the constant NUMBER_OF_TILES, but I could have named it
A or EXTERNAL_TEMPERATURE. You can give variables and constants any name you
want, but naming them with descriptive words will help you to remember their role
in your script.

•

•

•

Chapter 1

[17]

Also, the name is ALLCAPS. There's nothing special in NUMBER_OF_TILES constant
to be written ALLCAPS, it's just a convention to quickly distinguish constants from
variables. In this book, all constants will have ALLCAPS names.

Now we need a way to manage all tiles. There is no easier way to store an ordered
set of data than using arrays.

Think about an array as a container holding any number of individual
values in a single variable. Any individual value (called element) will
have a unique index to allow an easy access.

An array representation of a normal deck of 52 cards would be this one:

Note in AS3, as with many other programming languages, array indexes start from
zero. This is why we earlier talked about the cards 0 to 9.

So we declared an Array variable called tiles.

var tiles:Array=new Array();

This will create an array with no items in it. But we are about to populate it.

Notice constant name is uppercase while variables is lowercase. This is not
mandatory, but it's recommended to write names in a way that allows you to easily
recognize a variable from a constant. The scripts on this book will follow this rule.

As said earlier, the tiles will contain shapes easily recognized by children. But we
won't populate the tiles array with red squares or green circles. What if tomorrow
we needed to replace red squares with angry ducks?

We are working behind the scenes so let's just fill it with a pair of numbers from zero
up to (but not including) NUMBER_OF_TILES/2. This way we can easily associate any
symbol with any number without rewriting a single line of code.

for (var i:uint=0; i<NUMBER_OF_TILES; i++) {...}

Concentration

[18]

This is a for loop. It's used to repeat the same code a given number of times. Let's
see in detail how it works:

var i:uint=0; is simply declaring a new unsigned integer variable called i and
assigning it the starting value of 0.

i<NUMBER_OF_TILES; means the loop will reiterate as long as the value of i is less
than the NUMBER_OF_TILES value.

i++; means i is increased by 1 at the end of each iteration. The same thing can be
done with i=i+1 or i+=1.

It's easy to see that everything in the for block will be executed twenty times, since
we defined NUMBER_OF_TILES as 20.

tiles.push(Math.floor(i/2));

This is how we populate the array. push() method adds an element to the end of
the array, while Math.floor()method returns the floor of the expression passed
as parameter. In programming languages, you get the floor of a number when you
round it down.

Any action that the object can perform is called a method. Methods
in AS3 are called with objectname.method(arguments).

So at every for iteration a new element is added at the end of tiles array. This
element contains the floor of i/2, that will be 0 for i=0 (0/2 is 0) and i=1 (1/2 is
0.5 and the closest number below that is 0), 1 for i=2 and i= 3, and so on.

Adding randomness: shuffling the tiles
Now we managed to have a numeric representation of the tiles, but it's very easy to
guess the content of each tile. We already know 0th and 1st tile values are 0, 2nd and
3rd are equal to 1, and so on.

We have to add randomness to the game by shuffling the tiles. Randomness is very
important in games. Except for some genres such as adventures and puzzles that
require the player to retry the same identical level until he solves a specific problem,
randomness adds variety to games that would instead offer the same, boring,
challenge. Just think about a card solitaire in which you know where each card is.
Or a minesweeper game where you know the position of each mine. That's why the
generation of random scenarios is a very important game feature.

Chapter 1

[19]

A series of numbers is truly random if it is completely unpredictable. In other
words, if we have absolutely no way of knowing what the next number is in a
series of numbers, then the series is completely random. Since computers are 100%
predictable, generating true random numbers is not an easy task. Applications
like online casino software and security- programs (that is password generators,
data encryption, and more) demand the highest randomness possible. When
programming games, we can take it easy.

Every programming language has its own function to generate random numbers,
and that's enough for game development.

There are a lot of routines to shuffle an array, but we are using a modern variant of
the Fisher–Yates shuffle algorithm because it's very similar to randomly picking
cards from a deck one after another until there are no more left.

A real world representation modern Fisher-Yates shuffle algorithm works this way:

1. Align all tiles from left-to-right.
2. Place a coin on the rightmost tile.
3. Swap the tile with the coin with a random tile chosen among the ones to its

left, but the coin doesn't move.
4. Move the coin one card left.
5. Repeat from step 3 until the coin is on the leftmost card.

Hopefully you get the idea that the tiles are array elements and the coin is
array index:

Concentration

[20]

Just after // end of tiles creation loop add the following code:

// shuffling loop
var swap,tmp:uint;
for (i=NUMBER_OF_TILES-1; i>0; i--) {
 swap=Math.floor(Math.random()*i);
 tmp=tiles[i];
 tiles[i]=tiles[swap];
 tiles[swap]=tmp;
}
trace("My shuffled tiles: "+tiles);
// end of shuffling loop

Now test the movie and you will get:

My tiles: 0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9

My shuffled tiles: 1,6,2,5,7,3,0,8,3,2,0,9,9,8,4,7,6,4,1,5

The second sequence of numbers will change every time you execute the script
because it's the representation of the shuffled array.

Let's see how we got this result:

var swap,tmp:uint;

We need two more variables, both of them unsigned integers. Notice you can declare
more variables of the same type in a single line. This time the variables don't have an
initial value, because they'll get their values during the script. I also said generally
it's good to give explanatory names to variables, but here, as we're only using them
very locally we can give them nice and short names that are easy to type and quick
to read.

for (i=NUMBER_OF_TILES-1; i>0; i--) { ... }

This is another for loop. Do you see some differences between this loop and the one
used to create the tiles? Let's compare them. This was the previous loop:

for (var i:uint=0; i<NUMBER_OF_TILES; i++) { ... } // previous loop

In the second loop we don't need to declare the i variable because it has already been
declared in the first one. So we are just using i=value instead of var i:type=value.

Another difference is that the first loop increases the variable at every iteration, while
the second one decreases it.

Chapter 1

[21]

Double check your for loops to ensure they will end after a finite number
of iterations. This is a correct for loop for(i=0;i<1000000;i++){
... } because it will end after a million iterations, and this is a wrong
loop for(i=0;i>=0;i++){ ... } because it will never end. A loop that
never ends is called an infinite loop and will crash your application.

swap=Math.floor(Math.random()*i);

We already know what Math.floor()method does. It's time to meet another
Math method. Math.random() method returns a random number between 0
and 1 with 1 excluded.

This is likely to be a number with many decimal places, like 0.4567443452 so we
can use it to get random numbers for high values as well. For example, if you want
a random number between 0 (included) and 5 (excluded) you can just call Math.
random()*5. If you want a random number between 5 (included) and 10 (excluded)
you will call Math.random*5+5. In our loop we want an integer number between 0
(included) and i (excluded), so Math.floor(Math.random()*i) is exactly what
we need.

At this time, swap contains an integer number between 0 (included) and i (excluded).
It's time to apply Fisher-Yates shuffle algorithm and swap the content of the i-th
element of the array with the swap-th one.

To do this we need a temporary variable (called tmp) to save the content of the i-th
array element before overwriting it with the content of the swap-th element. Then
we can overwrite the content of the swap-th element with the value we just saved.

You can think of this as like swapping apples between hands. As you cannot hold
two apples in one hand to do the swap you need the help of a third hand (your tmp
variable) to hold one of the apples while you swap hands for the first.

Back to our script, the swapping process can be described with this picture:

At the end of the for loop, your array will be shuffled according to the
Fisher-Yates algorithm.

Concentration

[22]

The Concentration core is ready. You've just managed to:

Declare and use variables and constants.
Handle arrays to store information.
Use loops to reiterate sequences of code.
Work with numbers using mathematical functions.

Take a short break, in a moment your graphics skills will be proven.

Placing the tiles on stage
Until now, we just have a numeric representation of the shuffled tiles. There is
nothing the player can see or interact with. We need to draw the tiles.

Stop working (at the moment) at Main.as and select concentration.fla file from
the upper left tabs (you should see the blank stage) and create a new symbol (Insert
| New Symbol...). You will be taken to Create New Symbol window.

Fill the fields in this way:

•

•

•

•

Chapter 1

[23]

Name (the name you want to give to the object): tile_movieclip.
Type (it can be Movie Clip, Button, or Graphic): Movie Clip (it should be the
default value).
Folder: Library root (it should be the default value).
Export for ActionScript (defines if the symbol can be dynamically created
using ActionScript or not): checked.
Export in frame 1 (used to automatically export the symbol if you don't place
it on the Stage): checked (it should automatically be checked when you check
Export for Actionscript).
Class (symbol's class): tile_movieclip (it should be prefilled using the name
you gave the symbol).
Base Class (the class your symbol will extend): flash.display.MovieClip (it
should automatically appear when you check Export for Actionscript).

Press OK.

You'll probably get the same warning as before. Ignore it. I said "probably" because
you could have removed alerts or changed default values.

If you do not provide a class for your exported symbol, Flash will create the class for
you with this content:

package {
 import flash.display.MovieClip;
 public class movieclip_name extends MovieClip {
 public function movieclip_name() {
 }
 }
}

That is a class doing nothing. When you create a new symbol, Flash just warns you it
will create this basic class if you won't make your own.

To create the tiles, draw 10 distinct shapes in the first 10 frames of your symbol, and
the back of the tile in the 11th frame. You are free to draw them as you want, but I
suggest you make them as 90 pixels squares with registration point (starting x and
y position) at 0, because these are the properties of the tiles used in this chapter's
examples. At least, they should all be the same size.

Also notice the first frame is 1 while the first tile value is 0. You will need to
remember this when you make tiles flip.

•

•

•

•

•

•

•

Concentration

[24]

You should be familiar with Flash timeline and drawing tools. If you have not been
using Flash for a long time, don't worry. Basic drawing and timeline management
haven't changed that much since the very first Flash version. If you don't know how
to draw objects in Flash, refer to the official documentation.

Once you are satisfied, it's time to place the tiles on the stage: change the block of
code delimited by comment //variables and constants this way:

// variables and constants
const NUMBER_OF_TILES:uint=20;
const TILES_PER_ROW:uint=5;
var tiles:Array=new Array();
var tile:tile_movieclip;
// end of variables and constants

Here we need a new constant called TILES_PER_ROW. It will store the number of tiles
to be displayed in a row. Setting it to 5 means we want four rows of five tiles. If we
set it to 4, we will have five rows made of four tiles. This way you can modify the
game layout by simply changing a value.

tile is a variable of tile_movieclip type.

Now we have to use the new variable and constant to place tiles on the stage, so
add after// end of shuffling loop comment a new for loop (with a couple of
new comments):

// tile placing loop
for (i=0; i<NUMBER_OF_TILES; i++) {
 tile=new tile_movieclip();
 addChild(tile);
 tile.cardType=tiles[i];
 tile.x=5+(tile.width+5)*(i%TILES_PER_ROW);
 tile.y=5+(tile.height+5)*(Math.floor(i/TILES_PER_ROW));
 tile.gotoAndStop(NUMBER_OF_TILES/2+1);
}
// end of tile placing loop

Chapter 1

[25]

Test the movie and you'll see something like this:

The gray square with a "?" is the 11th frame of the tile_movieclip symbol.

Let's see how we made it possible:

At every for loop iteration the script places a tile on the stage.

tile=new tile_movieclip();

Creates a new tile_movieclip object.

addChild(tile);

addChild() adds an object to the Display List. It's the list that contains all visible
Flash content. To make an object capable of appearing on the stage, it must be
inserted in the Display List. A Display List object is called DisplayObject.

Although Display List contains all visible objects, you may not be able to
see some of them, for instance if they are outside the stage, or if they are
behind other objects, or even because they have been told to hide.

tile.cardType=tiles[i];

Concentration

[26]

Once a tile is added, you have to store somewhere its real value. We made it just
by adding a property called cardType which contains the value of tiles array
i-th element.

tile.x=5+(tile.width+5)*(i%TILES_PER_ROW);
tile.y=5+(tile.height+5)*(Math.floor(i/TILES_PER_ROW));

Just place the tile to be part of a grid.

Notice the presence of the modulo (%) operator. Modulo calculates the remainder of
the first operator divided by the second operator. So 5%3 will give 2, because 2 is the
remainder of 5 divided by 3.

Also notice the properties involved in this process:

x: x coordinate of the DisplayObject, in pixels from the left edge of the stage
y: y coordinate of the DisplayObject, in pixels from the top edge of the stage
width: the width of the DisplayObject, in pixels
height: the height of the DisplayObject, in pixels

In our example, tile number zero is the upper left one, followed by tile number
one at its right, then tile number two, and so on until tile number twenty, at the
bottom-right of the stage.

The recurring 5 number is the spacing between tiles. Why don't you try to define it as
a constant? It would be a good exercise at this time.

tile.gotoAndStop(NUMBER_OF_TILES/2+1);

As we said, the last frame of tile_movieclip object contains the tile graphics when
facing down. gotoAndStop(n) tells tile DisplayObject to go to n-th frame and stop.
In our case, it's showing the 20/2+1 = 11th frame, that is the tile facing down.

Picking tiles
We said we are going to pick tiles with a mouse click. To manage mouse events
such as clicks, movements, and rollovers, AS3 provides a dedicated class called
MouseEvent. The first thing we need to do is to import this new class.

Import it before main class declaration, in the code delimited by
// importing classes just like you imported Sprite class:

// importing classes
import flash.display.Sprite;

 import flash.events.MouseEvent;

// end of importing classes

•

•

•

•

Chapter 1

[27]

MouseEvent class is contained in the flash.events package, that's why I had to
import another package.

Now you are ready to handle mouse events. Modify the tile placing loop (the code
between // tile placing loop and // end of tile placing loop) this way:

// tile placing loop
for (i:uint=0; i<NUMBER_OF_TILES; i++) {
 tile = new tile_movieclip();
 addChild(tile);
 tile.cardType=tiles[i];
 tile.x=5+(tile.width+5)*(i%TILES_PER_ROW);
 tile.y=5+(tile.height+5)*(Math.floor(i/TILES_PER_ROW));
 tile.gotoAndStop(NUMBER_OF_TILES/2+1);

 tile.buttonMode = true;

 tile.addEventListener(MouseEvent.CLICK,onTileClicked);

}
// end of tile placing loop

If you remember the previous example, you will see when you hover a tile there isn't
anything that lets you know you can click on it. People are used to seeing a hand
cursor when over some content they can click.

tile.buttonMode = true;

Setting buttonMode property to true will make the tile behave like a button,
showing the hand pointer when the mouse is over it.

tile.addEventListener(MouseEvent.CLICK,onTileClicked);

A tile has to wait for the player to click on it. That's why we are using an event
listener. An event is an occurrence of any type, and a listener may be described as a
duty given to an entity, that patiently waits for the event to happen. Once it happens,
the entity will do an assigned task.

In the real world, imagine a light bulb (the entity) to have its own life. Its
duty is to wait (listening) for someone to turn on the switch button. Once
such an event occurs, the bulb does the assigned task: making electric
current pass through its filament, heating it until it produces the light.

Back to our Concentration game, each tile waits for the mouse to click over it, and
once it happens, executes the onTileClicked function. In this function, we will code
everything that must happen when the player clicked on a tile.

Concentration

[28]

Add this function inside the Main class but outside Main function, this way:

package {
 // importing classes
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 // end of importing classes
 public class Main extends Sprite {
 public function Main(){
 ...
 }

 private function onTileClicked(e:MouseEvent) {

 trace("you picked a "+e.currentTarget.cardType);

 e.currentTarget.gotoAndStop(e.currentTarget.cardType+1);

 }

 }
}

First, notice function name onTileClicked is the same as the second parameter in
the event listener. We also have a MouseEvent argument called e which will give us
useful information about the entity that generated the event. In this case we'll use it
to know which tile triggered the click event.

onTileClicked function is declared as private because it's meant to be used only
by Main class.

Fully explaining the difference between public and private functions is
beyond the scope of this book, anyway keep in mind you will use public
when you want the function to be called from classes outside the class in
which it has been declared, and private when you want the function to be
used only by the class in which it has been declared.

currentTarget property returns us the object that is actively processing the event.
In our case, the tile the player just clicked.

Do you remember cardType property you set for each tile? You can access it through
e.currentTarget.cardType. Not only do you know the hidden value that lies in
the front of the card, but you can flip the card showing its content.

A simple gotoAndStop(e.currentTarget.cardType+1)method tells the tile to
show the cardType+1-th frame. The +1 should remind you that the frames start
from 1 while tile values start from 0.

Test the movie and try to pick various tiles. You can pick all tiles and see their
content both in the game and in the debug window.

Chapter 1

[29]

The "graphic engine" is ready. At this time, you discovered how to:

Add and manage DisplayObjects on the stage on the fly.

Handle mouse click events.

That's everything the player is supposed to do: picking tiles.

Checking for matching tiles
It's time to let the player know whether he picked two matching tiles or not. Let's
think about Concentration like a turn-based game; at every turn the player can pick
no more than two cards before knowing if he has got a matching pick.

So we are going to add the following features:

Don't let the player pick the same tile twice in a turn.
Once he picked the second tile, check if selected tiles match.
If they match, remove them from stage.
If they do not match, turn them back again.

The idea is quite simple as we'll be using an array to store picked tiles. Once the
array contains two elements (two picked tiles), we'll see if tile values match.

So we need to declare a new array to be available in all main class functions and
make the NUMBER_OF_TILES constant available too. We'll be using both variables
in onTileClicked function, so we need to make them available throughout the
entire class.

If a variable is declared inside a function, it's called function level
variable or local variable and it's available only inside the function.
If a variable is declared in the class, then it is called class level
variable or instance variable and it will be available in the whole
class, all functions included.

Modify class variable declaration and variables and constants block this way:

package {
 // importing classes
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 // end of importing classes
 public class Main extends Sprite {

 private var pickedTiles:Array = new Array();

•
•
•
•

Concentration

[30]

 private const NUMBER_OF_TILES:uint=20;

 public function Main() {
 // variables and constants

 // no more NUMBER_OF_TILES here

 const TILES_PER_ROW:uint=5;
 var tiles:Array=new Array();
 var tile:tile_movieclip;
 // end of variables and constants
 ...
 }
 }
}

Nothing special as you can see, just remember to remove NUMBER_OF_TILES
declaration from Main function or you will get an error as you can only define
a variable once.

Now NUMBER_OF_TILES can be accessed throughout the whole class. As with
onTileClicked function, we need to decide if we want to make it available to
all classes that try to retrieve its value, or only by the class in which it has been
defined (Main).

We want the latter case, so we set it to private. If we wanted the first case, we
should have used public.

Now let's heavily rewrite onTileClicked function. Delete the existing one and write:

private function onTileClicked(e:MouseEvent) {
 var picked:tile_movieclip=e.currentTarget as tile_movieclip;
 trace("you picked a "+e.currentTarget.cardType);
 // checking if the current tile has already been picked
 if (pickedTiles.indexOf(picked)==-1) {
 pickedTiles.push(picked);
 picked.gotoAndStop(picked.cardType+1);
 }
 // end checking if the current tile has already been picked
 // checking if we picked 2 tiles
 if (pickedTiles.length==2) {
 if (pickedTiles[0].cardType==pickedTiles[1].cardType) {
 // tiles match!!
 trace("tiles match!!!!");
 pickedTiles[0].removeEventListener(MouseEvent.
 CLICK,onTileClicked);

Chapter 1

[31]

 pickedTiles[1].removeEventListener(MouseEvent.
CLICK,onTileClicked);
 removeChild(pickedTiles[0]);
 removeChild(pickedTiles[1]);
 } else {
 // tiles do not match
 trace("tiles do not match");
 pickedTiles[0].gotoAndStop(NUMBER_OF_TILES/2+1);
 pickedTiles[1].gotoAndStop(NUMBER_OF_TILES/2+1);
 }
 pickedTiles = new Array();
 }
 // end checking if we picked 2 tiles
}

First, we store the current picked tile in a variable called picked. Then we need to
know if the current tile is the one the player just clicked.

if (pickedTiles.indexOf(picked)==-1) { ... }

pickedTiles is the array designed to store all picked tiles. So we need to check if the
current tile (picked) is already in the array.

Remember I am using the three points (...) to indicate the block of code inside
braces isn't changed or relevant at this time.

indexOf method searches for an item in an array and returns the index position of
the item, or -1 if the item does not exist. So to ensure the picked tile is not the one the
player just picked, we need to check if indexOf(picked) method of pickedTiles
array is equal to -1.

The if statement allows execution of a block of code if a certain condition is true,
and optionally can execute another block of code if the condition is false.

if (condition){
 // execute if condition is true
}
else {
 // execute if condition is false
}

Once we checked it's a new tile, we store it in pickedTiles array and show the
tile's content.

We still don't know if this was the first or the second picked tile.

if (pickedTiles.length==2) {...}

Concentration

[32]

This line counts the number of elements (picked tiles) in pickedTiles array thanks
to length property that returns the number of elements in the array, and compares it
with two.

Notice the difference between = and ==. The former assigns a value, the latter tests
two expressions for equality.

If the condition is true, it means the player just picked the second tile and it's time
to check if selected tiles match. If pickedTiles has two elements, the first will have
index = 0 and the second index = 1, so to check if the content of picked tiles is the
same, it is just necessary to add another if statement:

if (pickedTiles[0].cardType==pickedTiles[1].cardType) { ... }

that simply compares the cardType attribute of both array elements.

If they match, it's time to remove the tiles for good. Before doing it, we have to tell
picked tiles not to listen anymore for mouse clicks. All in all, they are about to be
removed so why make them do useless tasks?

pickedTiles[0].removeEventListener(MouseEvent.CLICK,onTileClicked);
pickedTiles[1].removeEventListener(MouseEvent.CLICK,onTileClicked);

Remove the mouse click listener. Notice it has the same syntax as
addEventListener: same event, same function to be executed.

Removing listeners when they are no longer needed is not just a good
habit, but an imperative thing to do when working with complex
scripts that could slow down the execution if a lot of listeners are
waiting to be triggered.

As both click listeners have been removed, it's time to remove tiles object themselves.

removeChild(pickedTiles[0]);
removeChild(pickedTiles[1]);

removeChild() removes the DisplayObject from the Display List in the same way
addChild() added it.

And the operations to do in case of success are over.

Now it's time to see what to do when selected tiles do not match.

pickedTiles[0].gotoAndStop(NUMBER_OF_TILES/2+1);
pickedTiles[1].gotoAndStop(NUMBER_OF_TILES/2+1);

Chapter 1

[33]

That's why we had to define NUMBER_OF_TILES as a class level variable. It must be
accessible from onTileClicked function.

pickedTiles = new Array();

The last thing to do, whether the tiles match or not, is to clear the pickedTiles array
to let the player pick two more tiles. Constructing it again will make you have a
brand new empty array.

Test the game and you won't be able to see the second tile. But if you look at trace()
outputs you will see that it works. When it says tiles match, they are removed. When
it says they don't match, they turn covered. So what's wrong with the second tile?

Do you remember a game is like a movie? Everything behind the stage works
correctly, but there is still to work at what players will see.

Let's suppose we have a bullet time mode, the Concentration game would look
like this:

The player is not able to see everything the script is doing. At frame 0 the script
places the tiles, and the player is able to view the tiles. At frame i, the script uncovers
a tile and the player is able to view the uncovered tile. At frame j, the script uncovers
a tile, then sees picked tiles do not match, and covers them again. The player now
just sees all covered tiles. Obviously it's not just the player, but what Flash shows to
the screen.

Making the player see what happened
To get a playable game you just need to wait a second after the player picked the
second tile before removing/covering them.

This can be done by adding a timer in the game. Timer class included in flash.
utils package will let us use timers, and TimerEvent class included in flash.
events handles timer events.

Concentration

[34]

Let's start importing the classes and declaring a new variable. Change your script
until Main function looks like this:

package {
 // importing classes
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.events.TimerEvent;
 import flash.utils.Timer;
 // end of importing classes
 public class Main extends Sprite {
 private var pickedTiles:Array = new Array();
 private const NUMBER_OF_TILES:uint=20;
 private var pauseGame:Timer;
 public function Main() {
 ...
 }
 }
}

We just imported the two time-related classes in our package and created a new
Timer variable called pauseGame. It will come into play when the player selects
the second tile, so modify the block that checks if we picked two tiles this way:

// checking if we picked 2 tiles
if (pickedTiles.length==2) {
 pauseGame=new Timer(1000,1);
 pauseGame.start();
 if (pickedTiles[0].cardType==pickedTiles[1].cardType) {
 // tiles match!!
 trace("tiles match!!!!");
 pauseGame.addEventListener(TimerEvent.TIMER_COMPLETE,removeTiles);
 } else {
 // tiles do not match
 trace("tiles do not match");
 pauseGame.addEventListener(TimerEvent.TIMER_COMPLETE,resetTiles);
 }
 // no more pickedTiles = new Array();
}
// end checking if we picked 2 tiles

Once we know the player just picked the second tile, it's time to wait for one second.

pauseGame=new Timer(1000,1);

Chapter 1

[35]

Let's initialize the timer with the constructor, which is the function that generates it.
The first parameter defines the delay between timer events, in milliseconds, while
the second one specifies the number of repetitions. In this case, pauseGame will wait
for 1 second only once.

Again, you can use a constant, to store the number of milliseconds. I am not using it
because it should be clear how to use variables and constants and I want to focus on
new features.

pauseGame.start();

To make the timer start, use start() method.

When the timer reaches 1 second, it will dispatch a TimerEvent.TIMER_COMPLETE
event. So we have to make pauseGame listen for such an event.

pauseGame.addEventListener(TimerEvent.TIMER_COMPLETE,removeTiles);

and
pauseGame.addEventListener(TimerEvent.TIMER_COMPLETE,resetTiles);

Will make the program wait for the Timer object to complete its delay (one second)
and then call removeTiles or resetTiles function.

These functions will just handle the removing and the resetting of tiles in the same
way we did before. Add the functions inside Main class but outside Main function,
just as you did with onTileClicked function:

private function removeTiles(e:TimerEvent) {
 pauseGame.removeEventListener(TimerEvent.
 TIMER_COMPLETE,removeTiles);
 pickedTiles[0].removeEventListener(MouseEvent.CLICK,onTileClicked);
 pickedTiles[1].removeEventListener(MouseEvent.CLICK,onTileClicked);
 removeChild(pickedTiles[0]);
 removeChild(pickedTiles[1]);
 pickedTiles = new Array();
}

As you can see the function just removes the listeners and the tiles, just as before.

private function resetTiles(e:TimerEvent) {
 pauseGame.removeEventListener(TimerEvent.TIMER_COMPLETE,resetTiles);
 pickedTiles[0].gotoAndStop(NUMBER_OF_TILES/2+1);
 pickedTiles[1].gotoAndStop(NUMBER_OF_TILES/2+1);
 pickedTiles = new Array();
}

and this one just covers the tiles again.

Concentration

[36]

Notice how both functions remove TimerEvent listener and clear pickedTiles array
by initializing it again. Also, such array is no longer cleared in the block where we
checked if we picked 2 tiles block. Why not? Because it would clear the picked tiles
array before the script knows which tiles to remove/cover, as it happens after a second.

Run the program: it works! You can see the second tile for 1 second before the script
decides what to do. Your Concentration game is finished!

No, it's not.

Try to quickly pick three or four tiles. You can, because nobody told the script to
ignore clicks when it's waiting the second necessary to show you the tile you just
picked. So you can quickly take a look at more than two cards during a single turn.
That's cheating.

We can see more than two tiles if we quickly select a bunch of them.

Believe it or not, although the game is not finished yet, you have learned everything
you need to create a basic Concentration prototype. You just saw how to:

Execute different blocks of code according to a specific condition
Remove DisplayObject from the stage
Use timers to make the game wait

Let's make life impossible for those die hard cheaters!

•

•

•

Chapter 1

[37]

Preventing the player from cheating
Players will always try to cheat. When making a game, don't expect people to respect
any policy of playing.

We must prevent the player from continuing to pick tiles when the script is waiting
to let him see the second tile he picked.

We need another instance variable, of a new type. Change class level variables and
constants by coding this way:

// class level variables and constants
private var pickedTiles:Array = new Array();
private const NUMBER_OF_TILES:uint=20;
private var pauseGame:Timer;
private var canPick:Boolean=true;
// end of class level variables and constants

Boolean variables can only have a true or false value. canPick variable will decide
whether the player can pick another tile or not. Initially, it's true because the player
can pick a tile when the game begins.

Now change the onTileClicked function this way:

private function onTileClicked(e:MouseEvent) {
 if(canPick){
 var picked:tile_movieclip=e.currentTarget as tile_movieclip;
 trace("you picked a "+e.currentTarget.cardType);
 // checking if the current tile has already been picked
 if (pickedTiles.indexOf(picked)==-1) {
 pickedTiles.push(picked);
 picked.gotoAndStop(picked.cardType+1);
 }
 // end checking if the current tile has already been picked
 // checking if we picked 2 tiles
 if (pickedTiles.length==2) {
 canPick=false;
 pauseGame=new Timer(1000,1);
 pauseGame.start();
 if (pickedTiles[0].cardType==pickedTiles[1].cardType) {
 // tiles match!!
 trace("tiles match!!!!");
 pauseGame.addEventListener(TimerEvent.
 TIMER_COMPLETE,removeTiles);
 } else {
 // tiles do not match

Concentration

[38]

 trace("tiles do not match");
 pauseGame.addEventListener(TimerEvent.
 TIMER_COMPLETE,resetTiles);
 }
 // no more pickedTiles = new Array();
 }
 // end checking if we picked 2 tiles
 }
}

The entire function is executed only if the player can pick a tile. And that's right.
When the player picked the second tile, simply set canPick value to false and
you're done. The player cannot pick anymore.

The last thing to complete the game is letting the player be able to pick tiles again
once the game has covered/removed the tiles.

Change removeTiles function this way:

private function removeTiles(e:TimerEvent) {
pauseGame.removeEventListener(TimerEvent.TIMER_COMPLETE,removeTiles);
pickedTiles[0].removeEventListener(MouseEvent.CLICK,onTileClicked);
pickedTiles[1].removeEventListener(MouseEvent.CLICK,onTileClicked);
 removeChild(pickedTiles[0]);
 removeChild(pickedTiles[1]);
 pickedTiles = new Array();
 canPick = true;
}

And do the same with resetTiles function:

private function resetTiles(e:TimerEvent) {
 pauseGame.removeEventListener(TimerEvent.TIMER_COMPLETE,resetTiles);
 pickedTiles[0].gotoAndStop(NUMBER_OF_TILES/2+1);
 pickedTiles[1].gotoAndStop(NUMBER_OF_TILES/2+1);
 pickedTiles = new Array();
 canPick = true;
}

Simply set canPick value to false and again enable the player to pick tiles.

Test the movie. No more cheating!

Now we could just sit and play, but we want more.

Chapter 1

[39]

Fine-tuning the game: adding educational
content
At the beginning of this chapter I said this was going to be an educational game. It's
time to fine-tune the game and add educational content.

Polishing your game is a critical process, as it makes the difference
between a great game and "just another game". Once you have a
playable prototype like our Concentration game, it's time to fuel
up your creativity and try to distinguish it from the masses.

What if there were no more duplicate tiles with the same shape but, for instance, a
tile with a green circle and a tile with a "Green Circle" text? Children would need to
remember both tiles' positions and their meaning.

How can we add this feature without rewriting too much code? In two simple steps:

1. Create 20 distinct tiles with values from 0 to 19.
2. Let the script know matching tiles are 0 and 1, 2 and 3, 4 and 5, and so on.

This is the final code, stripped of all comments and trace() outputs. There isn't any
new concept, so you should be able to understand what it does by yourself.

Main function:

public function Main() {
 const TILES_PER_ROW:uint=5;
 var tiles:Array=new Array();
 var tile:tile_movieclip;
 for (var i:uint=0; i<NUMBER_OF_TILES; i++) {
 tiles.push(i);
 }
 var swap,tmp:uint;
 for (i=NUMBER_OF_TILES-1; i>0; i--) {
 swap=Math.floor(Math.random()*i);
 tmp=tiles[i];
 tiles[i]=tiles[swap];
 tiles[swap]=tmp;
 }
 for (i=0; i<NUMBER_OF_TILES; i++) {
 tile=new tile_movieclip();
 addChild(tile);
 tile.cardType=tiles[i];
 tile.x=5+(tile.width+5)*(i%TILES_PER_ROW);
 tile.y=5+(tile.height+5)*(Math.floor(i/TILES_PER_ROW));

Concentration

[40]

 tile.gotoAndStop(NUMBER_OF_TILES+1);
 tile.buttonMode=true;
 tile.addEventListener(MouseEvent.CLICK,onTileClicked);
 }
}

This is onTileClicked function

private function onTileClicked(e:MouseEvent) {
 if(canPick){
 var picked:tile_movieclip=e.currentTarget as tile_movieclip;
 if (pickedTiles.indexOf(picked)==-1) {
 pickedTiles.push(picked);
 picked.gotoAndStop(picked.cardType+1);
 }
 if (pickedTiles.length==2) {
 canPick=false;
 pauseGame=new Timer(1000,1);
 pauseGame.start();
 if (Math.floor(pickedTiles[0].cardType/2)==
 Math.floor(pickedTiles[1].cardType/2)) {
 pauseGame.addEventListener(TimerEvent.
 TIMER_COMPLETE,removeTiles);
 } else {
 pauseGame.addEventListener(TimerEvent.
 TIMER_COMPLETE,resetTiles);
 }
 }
 }
}

and this is resetTiles function

private function resetTiles(e:TimerEvent) {
 pauseGame.removeEventListener(TimerEvent.TIMER_COMPLETE,resetTiles);
 pickedTiles[0].gotoAndStop(NUMBER_OF_TILES+1);
 pickedTiles[1].gotoAndStop(NUMBER_OF_TILES+1);
 pickedTiles = new Array();
 canPick = true;
}

The other functions and declarations remain unchanged.

Chapter 1

[41]

And this is an example of a matching pair:

Purple square picture is tile 18 and "purple square" text is tile 19. They match.

Your Concentration game is now complete and ready to be played.

Summary
Concentration, while being an easy game to make and play, opened the path to the
world of programming games. Now you are able to set up a Flash project to make a
game, work with DisplayObjects, interact with basic data types such as variables and
arrays and manage mouse and timer listeners.

Where to go now
Test your AS3 skills adding new features to the game. I am giving you two
suggestions:

1. Detect when the player completed the game. You can easily do it by creating
a new instance variable that counts the successful matches and checks if they
are equal to the total number of tiles / 2.

2. Count how many tries the player is making using another instance variable
that you'll increment every time the player picks the second tile. Print these
values in the Output window.

Minesweeper
Minesweeper is a single player turn-based game whose goal is to clear a mine
field without being killed by a mine. The mine field is represented by a grid of
covered tiles, some of them hiding a mine. Grid size and number of mined tiles vary
according to difficulty level. At each turn, the player must pick a tile with a mouse
click. If he clicks on a tile without a mine, a digit with the amount of adjacent tiles
containing a mine will appear. Using logic, the player must click all free tiles. If he
hits a mine, the game is over. With a right-click on the tile, the player can "flag" that
tile, to help him remember where he thinks there is a mine. In some versions, the
player must flag all mines.

In this chapter you will learn how to make a complete Minesweeper game, using
these main techniques:

Multidimensional arrays
Loops with an unknown (yet not infinite) number of iterations
Functions with return values
Logical AND and OR operators
Recursive functions
Dynamic text fields
DisplayObjects hierarchy and DisplayObjectContainers
Adding custom variables to objects

Moreover, you will discover new AS3 features that will help you in the making
of the game.

•

•

•

•

•

•

•

•

Minesweeper

[44]

Defining game design
Although there have been many variants of the game since it first appeared in the
early 1980s, the game is best known for being included in every Windows OS release.
The beginner version has a 9x9 tiles mine field with 10 mines in it, and is the one we
are going to create.

There are also a couple of major features I want you to develop:

Flash movies have a reserved use of right mouse button, so to flag a tile we
will use Shift+click.
It can be frustrating when you start a game and you first click on a mine,
causing a "sudden death", so we'll make sure the first click is always on an
empty tile.

But first let's create a working prototype.

Creating the empty field
The very first step in the development of a Minesweeper game is the creation of the
empty field where mines will be placed.

The idea: As seen in the Concentration game, an array is the best way to represent a
set of elements such as cards or tiles, so we'll be using an array. At this time, we have
two options. Look at the picture (using a 4x4 field for the sake of simplicity):

On the left, a representation of the field as an array of tiles, just like the one used in
the Concentration game. Each tile is represented by an index from 0 to 15. On the
right, it's the same field represented by an array in which each row is an array of
tiles. Think about it as an array of lines, and each line is an array of tiles. This kind of
array is called multi-dimensional array.

Unlike single dimensional arrays, with just one index representing a linear set of
data, multi-dimensional arrays allow you to nest arrays into arrays.

•

•

Chapter 2

[45]

A two-dimensional array intuitively manages information that in the real world is
represented in two dimensions, such as a chessboard or the mine field we are about
to create. That is, it's a lot easier to figure out the second tile of that the third line is
at index 2,1 (remember an array index starts with zero) rather than at index 9. Even
accessing elements is more intuitive, while in the case of the first example to access
the second tile of the third line you have to do something like:

myElement = myArray[2*tilesPerRow+1]

with a multi-dimensional array you can simply access with something like:

myElement = myArray[2][1]

Moreover, we already used a single dimensional array in Concentration, so it's time
to meet multi-dimensional arrays.

Since the entire mine field will be represented by an array, we have to decide how
to code the various statuses a tile can have. We will use a two-dimensional array in
which every element can have one of these values:

0 if represents a tile with no mines in it and no mines in its adjacent tiles
1-8 if represents a tile with no mines in it and with 1 to 8 mines in its
adjacent tiles
9 if represents a tile with a mine in it. You can even define a constant called
something like HAS_MINE to store this value

The flag won't be represented by a numeric value since it does not affect the game,
it's just a marker.

So at first let's create a two-dimensional array completely filled by zeros.

The development: Create a new file (File | New) then from New Document
window select Actionscript 3.0. Set its properties as width to 550 px, height to
400 px, background color to #FFFFFF (white), and frame rate to 24. Also define
the Document Class as Main and save the file as minesweeper.fla.

Without closing minesweeper.fla, create a new file and from New Document
window select ActionScript 3.0 Class. Save this file as Main.as in the same path you
saved minesweeper.fla. It's the same process described during the creation of the
Concentration game, so if you have some troubles refer to Chapter 1, Concentration.

•

•

•

Minesweeper

[46]

Now in Main.as file write:

package {
 // importing classes
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 import flash.events.TimerEvent;
 import flash.utils.Timer;
 // end of importing classes
 public class Main extends Sprite {
 // class level variables
 private const FIELD_W:uint=9;
 private const FIELD_H:uint=9;
 private var mineField:Array=new Array();
 // end of class level variables
 public function Main() {
 // mine field creation
 for (var i:uint=0; i<FIELD_H; i++) {
 mineField[i]=new Array();
 for (var j:uint=0; j<FIELD_W; j++) {
 mineField[i].push(0);
 }
 trace("Row "+i+": "+mineField[i]);
 }
 trace("The whole mine field: "+mineField);
 // end of mine field creation
 }
 }
}

Test the movie and you'll see:

Row 0: 0,0,0,0,0,0,0,0,0

Row 1: 0,0,0,0,0,0,0,0,0

Row 2: 0,0,0,0,0,0,0,0,0

Row 3: 0,0,0,0,0,0,0,0,0

Row 4: 0,0,0,0,0,0,0,0,0

Row 5: 0,0,0,0,0,0,0,0,0

Row 6: 0,0,0,0,0,0,0,0,0

Row 7: 0,0,0,0,0,0,0,0,0

Row 8: 0,0,0,0,0,0,0,0,0

The whole mine field: 0,0,0,0,0, ... ,0,0,0,0

Chapter 2

[47]

As you can see, each row is an array of numbers, and the whole mine field is an array
of rows (arrays).

First, notice mouse and timer classes have already been imported. We know we are
going to use mouse clicks and timers, so why not import all required classes right
now? At least, I won't bother you by asking you to include them later.

FIELD_W and FIELD_H class level (instance) constants store respectively the width
and the height of the mine field, while mineField variable is going to be our
multi-dimensional array. At the moment, it's declared and constructed just as
a normal array.

Also notice I declared them as class level variables/constants even if I am not using
them outside the main function at the moment. But I know I'll do it later. Going
through a stage of game design allows you to plan where to use critical variables,
and speeds up declaration since there is no cut/paste of variable declarations here
and there.

for (var i:uint=0; i<FIELD_H; i++) { ... }

Looping through all mine field rows. Obviously the height of the mine field
represents the number of rows while the width represents the number of columns.

mineField[i]=new Array();

Here we go: The i-th element of mine field array is constructed as an empty array.
Congratulations. You just built your first multi-dimensional array.

for (var j:uint=0; j<FIELD_W; j++) {
 mineField[i].push(0);
}

Just fill the newborn array with as many zeros as the number of columns in the
mine field.

And now the mine field is ready to be filled with mines.

Placing the mines
Once the empty mine field has been created, we need to add the mines. We just have
to define how many mines we want in the game, then place them in random spots.

The idea: We know a mined tile will have 9 value, so the idea is to select a random
tile, check if its value is 0, then set it to 9. You must check if its value is zero to avoid
placing a mine on a tile that already contains a mine. You would end up with a
number of mined tiles that's less than the one you defined.

Minesweeper

[48]

The development: Remove all previous traces to clean the code and change class
level variables this way:

// class level variables
private const FIELD_W:uint=9;
private const FIELD_H:uint=9;
private const NUM_MINES:uint=10;
private var mineField:Array=new Array();
// end of class level variables

NUM_MINES represents the number of mines we want to place in the mine field. Then
after the end of mine field creation add this code:

// placing mines
var placedMines:uint=0;
var randomRow,randomCol:uint;
while (placedMines<NUM_MINES) {
 randomRow = Math.floor(Math.random()*FIELD_H)
 randomCol = Math.floor(Math.random()*FIELD_W);
 if (mineField[randomRow][randomCol]==0) {
 mineField[randomRow][randomCol]=9;
 placedMines++;
 }
}
trace("My dangerous mine field: "+mineField);
// end of placing mines

Test the movie and you'll see something like this in the output window:

My dangerous mine field: 0,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,9,0,0,0,0
,0,0,0,0,0,0,0,0,0,9,0,9,0,0,0,0,0,0,0,9,0,0,9,0,0,0,0,0,0,9,9,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0

Obviously this will change every time because it's randomly generated, but there
will always be NUM_MINES values set to 9.

var placedMines:uint=0;

Declares a new variable called placedMines that will store the number of mines we
placed so far. Obviously it starts at 0.

var randomRow,randomCol:uint;

Declares two variables used to store random numbers representing the row and
column in which we want to place a mine.

while (placedMines<NUM_MINES) { ... }

Chapter 2

[49]

while loop is really easy to understand because it just executes the block of code as
long as its condition is true.

while(condition==true){ ... }

In this case everything between { and } will be executed until the condition is not
true.

In a practical example, this for loop:

for(var i:uint=0;i<10;i++){ ... }

and this while loop:

var i:uint=0;
while(i<10){
 ...
 i++
}

work the same way, because both will reiterate until i is less than 10 and both
increase i by 1 at the end of each iteration.

Why didn't I just use another for loop? Because while is a better loop when you
don't know how many times you will need to reiterate the code. In this case, I don't
know how many times I will try to place a mine because I don't know if the random
tile I am going to pick already contains a mine, forcing me to choose another one.

The while loop in the code will iterate over the block between { and } until the
number of mines is equal to the number of mines we want.

randomRow = Math.floor(Math.random()*FIELD_H);
randomCol = Math.floor(Math.random()*FIELD_W);

Simply generates two random integer numbers between 0 (included) and the
number of rows/columns (excluded) in the mine field.

if (mineField[randomRow][randomCol]==0) { ... }

Checks if the mine field contains an empty tile in the random row and column we've
just chosen. Notice how you can access multi-dimensional arrays:

value = multi_array[dim1_][dim_2]...[dim_n]

Just specify the series of indexes one after another.

mineField[randomRow][randomCol]=9;

Minesweeper

[50]

Places a mine in the randomly chosen tile.

placedMines++;

We know we just placed a mine so we have to increment by 1 the number of placed
mines, to see if while loop should reiterate again.

At the end of the code, the mine field will contain exactly NUM_MINES mines, no
matter how many times you tried to place a mine in a tile already containing a mine.

Adding the digits
Now the array is filled with empty tiles and mines, so it's time to complete it with the
digits representing the amount of adjacent mines to every empty tile.

The idea: There are two strategies to determine the number of mines around a tile:
We can locate all mines and for every mine increase by one the value of all adjacent
tiles that do not contain a mine, or we can locate all empty tiles, and for each tile
count the number of mines in its adjacent tiles. It's just a matter of speed, and since
in traditional Minesweeper games there are less mines than empty tiles, we can
reasonably think the first method is the fastest.

This is how it works: every mine increases by one the value of its adjacent tiles to
give the complete mapping of the tile's adjacent mines.

The development: Remove all previous traces to clean unnecessary code and add
after // end of placing mines:

// placing digits
for (i=0; i<FIELD_H; i++) {
 for (j=0; j<FIELD_W; j++) {
 if (mineField[i][j]==9) {
 // to the left
 if (j!=0&&mine_field[i][j-1]!=9) {
 mineField[i][j-1]++;
 }
 // to the right

Chapter 2

[51]

 if (j!=FIELD_W-1&&mineField[i][j+1]!=9) {
 mineField[i][j+1]++;
 }
 // up
 if (i!=0&&mineField[i-1][j]!=9) {
 mineField[i-1][j]++;
 }
 // down
 if (i!=FIELD_H-1&&mineField[i+1][j]!=9) {
 mineField[i+1][j]++;
 }
 // up left
 if (i!=0&&j!=0&&mineField[i-1][j-1]!=9) {
 mineField[i-1][j-1]++;
 }
 // up right
 if (i!=0&&j!=FIELD_W-1&&mineField[i-1][j+1]!=9) {
 mineField[i-1][j+1]++;
 }
 // down left
 if (i!=FIELD_H-1&&j!=0&&mineField[i+1][j-1]!=9) {
 mineField[i+1][j-1]++;
 }
 // down right
 if (i!=FIELD_H-1&&j!=FIELD_W-1&&mineField[i+1][j+1]!=9) {
 mineField[i+1][j+1]++;
 }
 }
 }
}
var debugString:String;
trace("My complete and formatted mine field: ");
for (i=0; i<FIELD_H; i++) {

debugString="";
 for (j=0; j<FIELD_W; j++) {
 debugString+=mineField[i][j]+" ";
 }
 trace(debugString);
}
// end of placing digits

Yes, it's a lot of code but don't worry: there is room for optimization.

Minesweeper

[52]

Test the movie and look at your output window:

My complete and formatted mine field:

0 0 1 9 2 9 1 0 0

0 0 1 1 2 2 2 1 0

0 0 0 0 0 2 9 2 0

0 0 0 0 1 4 9 3 0

1 1 1 0 1 9 9 2 0

2 9 2 0 1 2 3 2 1

2 9 2 0 0 0 1 9 2

1 1 1 0 0 0 1 2 9

0 0 0 0 0 0 0 1 1

As usual your result will be different, but it will represent a Minesweeper level.

I used the same couple of for loops that were used before to scan the entire array.

if (mineField[i][j]==9) { ... }

This entire block is executed only if the tile I am currently checking contains a mine.

The rest of the code simply checks if adjacent tiles exist and do not contain a mine. In
this case, their value is increased.

// to the left
if (j!=0&&mineField[i][j-1]!=9) {
 mineField[i][j-1]++;
}

When checking for the tile on the left, first we must know if we aren't already on the
first column: in this case there can't be any tile on the left.

!= is the inequality operator and acts as the opposite of the equality
operator (==) testing two expressions for inequality.

Be careful when accessing array elements. Trying to access array elements that do
not exist will cause errors in the code.

If we aren't on the first column (j value is different than 0) and the tile on the left
does not contain a mine, then we can increase by one the value of the tile on the left.

Chapter 2

[53]

The && is the logical AND operator. The and operator returns true if
both expressions are true, in this case if j is different than zero AND
mineField[i][j-1] is different than nine.

// to the right
if (j!=FIELD_W-1&&mineField[i][j+1]!=9) {
 mineField[i][j+1]++;
}

Same concept applied to the tile on the right. First we must check if the current tile
is not on the last column (j value is different than the field width minus one, or
FIELD_W-1), then we check if the tile on the right contains a mine, and increase by
one the value of the tile on the right if it doesn't.

This concept is repeated for all eight possible directions. At the end of the couple
of for loops, I just made another quick loop to display the finished mine field in a
readable way. This will help you to check everything works fine when you test the
complete game.

Optimization needed
As you probably noticed, writing the code for the digits was extremely boring. You
had to repeat eight similar controls to check for tile values. Not to mention that you
had to verify you were working on existing tiles.

When you realize you are writing pieces of code that look similar and do similar
operations, it's time to optimize the code.

Let's start with the if checking for tile existence and value. Wouldn't it be good
if there was a unique instruction to determine if the tile exists and in that case to
retrieve its value?

Well, it exists, it's called tileValue and you are about to make it.

Add this new function to your class:

private function tileValue(row,col:uint):int {
 if(mineField[row]==undefined || mineField[row][col]==undefined){
 return -1
 } else {
 return mineField[row][col];
 }
}

Minesweeper

[54]

You've already seen functions and how to add them to your class when you added
the mouse click and timer listeners during the making of the Concentration game.
Now it's time to create custom functions to make our life easier.

private function tileValue(row,col:uint):int { ... }

This is the way you specify the function that requires two unsigned integer
arguments and returns an integer. A function does not just execute a code, like the
ones you met during the making of the Concentration game, but can give a value as
a result.

Just think about a function like a mad witch. You give her some strange stuff such
as bat wings and lizard tails, and after making something mysterious she gives
you a potion to turn someone into a frog. The great thing is once you've made your
functions (witch) you don't need to know how they do the magic anymore.

Back to Minesweeper, you give tileValue function two unsigned integers, the row
and the column number of the tile you want to know the value of, and it returns you
an integer: the value of the tile in the selected row and column, or -1 if the tile does
not exist.

The core of the function lies here:

if(mineField[row]==undefined||mineField[row][col]==undefined){ ... }

this is the line that checks if the tile exists. Accessing an array index that does not
exist, returns undefined. We can look for undefined to check if an array element exists.

The || is the logical OR operator. The logical OR returns true if either
or both expressions are true, in this case if mineField[row] is equal to
undefined or mineField[row][col] is equal to undefined.

Also, checking for the second dimension index mineField[row][col] after
checking for the first one mineField[row] has its meaning: performing a
logical OR, the condition is true as soon as mineField[row] is undefined, so
mineField[row][col] won't be checked unless mineField[row] is not undefined.
This will present us a warning because trying to access a two-dimensional index
when the first dimensional index is undefined throws a warning message.

return -1

This is how you can return a result from a function: return value or return(value)
will make function return value when called.

Chapter 2

[55]

We could return any value that is not used already (0-9) such as 10 or 99, but it is a
standard to return -1 to indicate an error when programming.

Now we have a custom function doing the dirty job for us, but there is still room for
optimization: finding the value of surrounding tiles.

i and j being the starting indexes, values range from i-1 to i+1 and from j-1 to j+1.
Why not include them in another couple of for loops?

That's what the couple of for loops to place digits becomes:

for (i=0; i<FIELD_H; i++) {
 for (j=0; j<FIELD_W; j++) {
 if (mineField[i][j]==9) {
 for (var ii:int =-1; ii<=1; ii++) {
 for (var jj:int =-1; jj<=1; jj++) {
 if (ii!=0||jj!=0) {
 if (tileValue(i+ii,j+jj)!=9&&tileValue(i+ii,j+jj)!=-1) {
 mineField[i+ii][j+jj]++;
 }
 }
 }
 }
 }
 }
}

As you can see, I added another couple of for loops counting from -1 to +1. The new
variables used in the loops are ii and jj.

if (ii!=0||jj!=0) { ... }

You have to check if ii or jj are different than 0, because if both ii and jj are 0, this
means I am on the tile itself and not on a surrounding one.

if (tileValue(i+ii,j+jj)!=9&&tileValue(i+ii,j+jj)!=-1) { ... }

Minesweeper

[56]

This is how I use tileValue function to check if the surrounding tile is not a mine
(different than 9) and exists (different than -1).

mineField[i+ii][j+jj]++;

Incrementing the surrounding tile the same way as before optimization.

At the end of this process, the entire mine field is ready.

Placing tiles on stage
It's time to make the player see something, so prepare yourself to design some
cute tiles.

The idea: The simplest way to place tiles on stage is to create a movie clip with a
frame for each tile state, then add it on the stage.

The development: In minesweeper.fla, create a new Movie Clip symbol called
tile_movieclip and set it as exportable for ActionScript making sure the export
name is also tile_movieclip. Leave all other settings at their default values, just
like you did during the making of Concentration game.

Now you need to draw four types of tiles, one for each frame.

frame 1: the covered tile
frame 2: the clicked tile with the digit
frame 3: the tile you don't want to see: the mine.
frame 4: the flagged tile

I know in Windows Minesweeper there is the question mark tile too, but we're not
going to be adding this feature in our version, since solving a 9x9 game is more a
matter of speed.

Try to draw tiles in a way that a complete 9x9 field fits well in the stage, so don't
make them too big or too small. Also make sure they're all exactly the same size on
each frame. The ones I made are squares with a 20 pixels side, with registration point
at (0,0).

•

•

•

•

Chapter 2

[57]

Here they are:

As said during the making of Concentration, you should be familiar with timeline
and drawing, but I want to focus on the text field you have to draw.

As you can see in the picture, I inserted a text field with a 5 in it, but its content will
vary from nothing (an empty string) to represent a safe tile with no mines around
it, to any integer number between 1 and 8, to represent a safe tile with some mines
around it.

I could have made you draw nine tiles, one for each number from 1 to 8 plus a tile
with no numbers, but it would have been a malpractice. We will use a Dynamic Text
to change text field's value on the fly.

To turn a text field in a Dynamic Text, just select Dynamic Text in Text type and give
it a name in the Instance name field. This name, in our case tile_text, will be the
way we'll access the text field in the script.

Also, make sure Selectable is unchecked or the player will be able to select the text
and the cursor will change as if you were over a text in an HTML page.

Finally, click on Embed... and check Numerals [0..9] because that's the characters we
are going to use.

Minesweeper

[58]

The previous settings should look like this:

If you create a dynamic text field without embedding any font, once executed the
game looks for that font on the user's computer. If it does not find it, the font is
replaced with a default one. To prevent this you can use common fonts such as
Arial or Verdana, or embed the fonts you are using in your game.

Embedding brings a lot of benefits, such as anti-aliasing, transparency, and the
complete freedom of using the font you prefer.

The cost of this technique is an embedded font increases the file size of your game.
That's why we must carefully select the characters we want to embed.

Once the tile movieclip has been created, it's time to turn back editing Main.as file.
First we need two more class level variables:

// class level variables
private const FIELD_W:uint=9;
private const FIELD_H:uint=9;
private const NUM_MINES:uint=10;
private var mineField:Array=new Array();
private var game_container:Sprite=new Sprite();
private var tile:tile_movieclip;
// end of class level variables

Chapter 2

[59]

We will use tile variable to create tile_movieclip instances, following the same
concept already explained during the making of Concentration.

The interesting line anyway is the creation of a new sprite called game_container
which may seem useless. You already have a tile with everything you need, why
should you create another Sprite?

It's time to deeply dive into Display List I quickly introduced during the creation of
Concentration game.

You know the Display List is the list that contains all visible Flash content, but it's
not just a matter of visualization. The Display List also manages objects depth and
hierarchy.

If you add two objects on the Display List, and they overlap then the second object
will be placed over the first one, covering it. Same thing if you add a third objects, it
will be placed over the first and the second ones, covering them, and so on. It's as if
they were layered.

In the previous picture, here's what you see if you add to the Display List the blue
rectangle, then the green circle, then the red square. Display List's depth starts from
zero, so the rectangle, the circle, and the square will have respectively a depth of 0, 1,
and 2.

About the hierarchy, the Display List has three types of objects:

The stage, the father of the Display List hierarchy. Every Flash movie has
one and only one stage object that contains the main class (called Main
in our case).
DisplayObjectContainer, an object capable of containing other DisplayObjects
and DisplayObject Containers as children.
DisplayObjects: any visual element. After a DisplayObject is created, it won't
appear on screen until it's added to a DisplayObjectContainer. Sprites and
MovieClips are both DisplayObjects and DisplayObjectContainers.

•

•

•

Minesweeper

[60]

The entire hierarchy can be displayed as a tree, as in this picture.

Organizing your DisplayObjects in a proper hierarchy not only will allow you to
easily access and manipulate multiple DisplayObjects with a single action, but will
help you to remember the role of a DisplayObject if you haven't worked on the script
for a long time. It follows the same principle of giving variables and constants names
that make sense.

Also remember a DisplayObject is a DisplayObjectContainer as well, and both Sprite
and MovieClip are DisplayObjects.

Back to Minesweeper, game_container is the DisplayObjectContainer that will
contain all tiles.

After // end of placing digits add this code:

// tile creation
addChild(game_container);
for (i=0; i<FIELD_H; i++) {
 for (j=0; j<FIELD_W; j++) {
 tile = new tile_movieclip();
 game_container.addChild(tile);
 tile.gotoAndStop(1);
 tile.nrow=i;
 tile.ncol=j;
 tile.buttonMode=true;
 tile.x=tile.width*j;
 tile.y=tile.height*i;
 tile.addEventListener(MouseEvent.CLICK,onTileClicked);
 }
}
// end of tile creation

Chapter 2

[61]

And the function to handle mouse click is:

private function onTileClicked(e:MouseEvent):void {
 trace("row: "+e.currentTarget.nrow+", column: "+e.currentTarget.
ncol);
}

Test the movie and you'll see your mine field:

Click on some tiles and in the Output window you'll see:

row: 5, column: 2

That obviously changes according to the tile you clicked. If you aren't familiar with
listeners, check Chapter 1, Concentration.

The way we placed tiles is not that different to the one we have already seen
in Concentration game so I won't explain it, but I want you to see how to use a
DisplayObjectContainer.

addChild(game_container);

The first DisplayObject to be added is game_container sprite.

game_container.addChild(tile);

Minesweeper

[62]

This is how to add a DisplayObject to a DisplayObjectContainer. Just use
addChild() method on the object to be added, just as if you were adding it
on the stage.

tile.gotoAndStop(1);

Showing the first frame, the covered tile.

tile.nrow=i;
tile.ncol=j;

Saves tile row and column position in the mine field. This will allow us to know its
position and retrieve its value in mineField array.

nrow and ncol aren't AS3 keywords, but arbitrary variable names I assigned to
tile object. You can assign any variable you want on an object.

This is a graphical representation of our Display List at the end of the script:

Knowing this structure and that depths in AS3 are contiguous and cannot be
negative, will come in handy when continuing in the making of the game.

tile.buttonMode=true;

Makes the tile act like a button, showing the cursor hand when the mouse is over it.

tile.x=tile.width*j;
tile.y=tile.height*i;

Places the tile at its final coordinates according to its position in the array.

tile.addEventListener(MouseEvent.CLICK,onTileClicked);

Adds an event listener. At this time it just prints in the output window the
coordinates of the tile you clicked, so it's time to enhance it.

Chapter 2

[63]

Showing tile contents
Once the player clicks on a tile, no matter its type, he/she must be able to see
its content.

The idea: Once the mouse click listener has been triggered, the clicked tile will react
this way:

show frame 3 if it's a mine.
show frame 2 and change the text according to the number of surrounding
mines if it's not a mine.
show frame 2 and display no text if it's not a mine and there aren't adjacent
tiles with a mine.

And, for all cases, remove the listener. A tile can be clicked only once.

The development: Rewrite onTileClicked function this way:

private function onTileClicked(e:MouseEvent):void {
 var clicked_tile:tile_movieclip=e.currentTarget as tile_movieclip;
 clicked_tile.removeEventListener(MouseEvent.CLICK,onTileClicked);
 clicked_tile.buttonMode=false;
 var clickedRow:uint=clicked_tile.nrow;
 var clickedCol:uint=clicked_tile.ncol;
 var clickedValue:uint=mineField[clickedRow][clickedCol];
 trace("row: "+clickedRow+", column: "+clickedCol+" ->
 "+clickedValue);
 // empty tile
 if (clickedValue==0) {
 clicked_tile.gotoAndStop(2);
 clicked_tile.tile_text.text="";
 }
 // end of empty tile
 // numbered tile
 if (clickedValue>0&&clickedValue<9) {
 clicked_tile.gotoAndStop(2);
 clicked_tile.tile_text.text=clickedValue.toString();
 }
 // end of numbered tile
 // mine
 if (clickedValue==9) {
 clicked_tile.gotoAndStop(3);
 }
 // end of mine
}

•

•

•

Minesweeper

[64]

Test the movie and you will be able to click on tiles and reveal their contents.

var clicked_tile:tile_movieclip=e.currentTarget as tile_movieclip;

Creates a new tile_movieclip variable and assigns it the value of the tile the player
just clicked. Remember currentTarget property returns us the object that is actively
processing the event.

clicked_tile.removeEventListener(MouseEvent.CLICK,onTileClicked);
clicked_tile.buttonMode=false;

A tile can be clicked only once, so let's remove the listener for mouse click and the
property to make it look like a button.

var clickedRow:uint=clicked_tile.nrow;
var clickedCol:uint=clicked_tile.ncol;

Retrieving nrow and ncol values we inserted when we created the tiles.

var clickedValue:uint=mineField[clickedRow][clickedCol];

And finally this is the real value of the tile. At this stage, the game must show the
proper result.

// empty tile
if (clickedValue==0) {
 clicked_tile.gotoAndStop(2);
 clicked_tile.tile_text.text="";
}
// end of empty tile

If it's an empty tile, then you must show the second frame and set the digit to an
empty string setting text property to "" (nothing).

Look how I accessed the text field: clicked_tile.tile_text: this way you access
a child of clicked_tile called tile_text that is the instance name we gave to the
text field.

// numbered tile
if (clickedValue>0&&clickedValue<9) {
 clicked_tile.gotoAndStop(2);
 clicked_tile.tile_text.text=clickedValue.toString();
}
// end of numbered tile

Chapter 2

[65]

When you find a numbered tile, a tile with a digit, the process is almost the same:
show the second frame and set the digit according to tile value. Since clickedValue
is an unsigned integer and the text to write is a string, you must convert
clickedValue to a string using toString() method.

// mine
if (clickedValue==9) {
 clicked_tile.gotoAndStop(3);
}
// end of mine

Managing a mine is even easier because you only need to show the third frame.

At this time you are virtually ready to play the game, because the script generates the
mine field and shows any kind of tile when you click over it. The playable prototype
is over. But the hardest part is yet to come.

Auto showing adjacent empty tiles
In every respectable version of Minesweeper, if the player clicks a tile whose value
is zero, the game automatically shows all its surrounding tiles, and if any of these
tiles has a zero value, then its surrounding tiles are revealed too, and if one of its
surrounding tiles has a zero, it continues this way.

The idea: There is a well known algorithm that can help you to do this task: it is
called flood fill and it's commonly used in paint programs when you use the "bucket"
fill tool. We'll apply the same principle to the game, because we have to "fill" the
empty tiles as if we were painting them with a bucket tool.

This is how the flood fill works:

In the first step, the node (a tile, a pixel, or whatever) selected to be painted changes
its color (state) and tries to change the color of all its surrounding nodes (in some
versions, diagonal nodes are ignored).

Minesweeper

[66]

Then every painted node tries to perform the flood fill to its surrounding nodes, and
then again every newly painted node applies to flood fill until the entire fill-able area
is processed.

The development: we'll use a custom version of the flood-fill algorithm to show
adjacent empty tiles. Replace the section that manages the empty tile this way:

// empty tile
if (clickedValue==0) {
 floodFill(clickedRow,clickedCol);
}
// end of empty tile

We found an empty tile so it's time to call floodFill function passing tile's
coordinates and arguments.

And now add a new function:

private function floodFill(row,col:uint):void {
 var emptyTile:tile_movieclip;
 emptyTile=game_container.getChildAt(row*FIELD_W+col) as tile_
movieclip;
 if (emptyTile.currentFrame==1) {
 emptyTile.removeEventListener(MouseEvent.CLICK,onTileClicked);
 emptyTile.buttonMode=false;
 emptyTile.gotoAndStop(2);
 if (mineField[row][col]>0) {
 emptyTile.tile_text.text=mineField[row][col].toString();
 } else {
 emptyTile.tile_text.text="";
 }
 if (mineField[row][col]==0) {
 for (var ii:int =-1; ii<=1; ii++) {
 for (var jj:int =-1; jj<=1; jj++) {
 if (ii!=0||jj!=0) {
 if (tileValue(row+ii,col+jj)!=9) {
 if (tileValue(row+ii,col+jj)!=-1) {
 floodFill(row+ii,col+jj);
 }
 }
 }
 }
 }
 }
 }
}

Chapter 2

[67]

Do you notice anything new in this function? It's a function that calls itself. Functions
that call themselves are called recursive functions.

Recursive functions are generally dealt with as more advanced programming but
they are very useful for games, so we'll be looking at them early. Do you remember
you use a while loop when you don't exactly know how many times you will need
to reiterate the code? The same concept lies behind recursive functions: we use them
when we don't know how many times we have to call the same function in order to
accomplish a task.

var emptyTile:tile_movieclip;

Declares a new tile_movieclip variable. This will represent the tile on which we are
starting the flood fill algorithm

emptyTile=game_container.getChildAt(row*FIELD_W+col) as tile_
movieclip;

This is how you know what tile you are on according to its row and column
values. I showed you how DisplayObjects are placed at different indexes (depths).
Now it's time, given a row and a column position, to retrieve DisplayObject.
getChildAt(index) method returns the child DisplayObject instance having the
specified index. So we know the third tile on the fourth row, for instance, is the
(3*9+2)th child of game_container DisplayObject.

if (emptyTile.currentFrame==1) { ... }

Before applying the flood fill, we must ensure the current tile is still covered. If you
don't check for it, you'll probably end with an infinite loop, with the same two tiles
applying the flood fill algorithm one to each other.

The possibility of ending in an infinite loop is why recursive functions are normally
left to more advanced programmers because you can end up killing your program.
But don't worry because if it happens Flash will warn you after 15 seconds of
being stuck.

Checking for the tile to be covered, we ensure the flood fill will be applied only once.
You know a tile is covered when it's showing the first frame. currentFrame property
returns the number of the frame the MovieClip is currently showing.

emptyTile.removeEventListener(MouseEvent.CLICK,onTileClicked);
emptyTile.buttonMode=false;
emptyTile.gotoAndStop(2);

Minesweeper

[68]

Removing the listener and the button behavior, and showing the second frame.

if (mineField[row][col]>0) {
 emptyTile.tile_text.text=mineField[row][col].toString();
} else {
 emptyTile.tile_text.text="";
}

This simply updates the digit on the tile according to its value, as seen before.

if (mineField[row][col]==0) { ... }

If the tile is an empty tile with no adjacent mines, it's time to perform the flood fill on
its surrounding tiles. That's how recursion comes into play.

for (var ii:int =-1; ii<=1; ii++) {
 for (var jj:int =-1; jj<=1; jj++) {
 if (ii!=0||jj!=0) {
 if (tileValue(row+ii,col+jj)!=9) {
 if (tileValue(row+ii,col+jj)!=-1) {
 floodFill(row+ii,col+jj);
 }
 }
 }
 }
}

This is the same couple of for loops used when we optimized the code, it scans all
adjacent cells and if they exist (value different than -1) and do not contain a mine
(value different than 9), floodFill is recursively called on them.

You can now test the movie and play with the auto-show feature.

Flagging tiles
Now the player must be given the option to flag tiles. You can take a breath as it's
quite easy.

The idea: The player can flag/unflag a tile by clicking on it while holding Shift key.
A flagged tile cannot be uncovered until it's unflagged.

Chapter 2

[69]

The development: Modify onTileClicked function this way:

private function onTileClicked(e:MouseEvent):void {
 var clicked_tile:tile_movieclip=e.currentTarget as tile_movieclip;
 var clickedRow:uint=clicked_tile.nrow;
 var clickedCol:uint=clicked_tile.ncol;
 var clickedValue:uint=mineField[clickedRow][clickedCol];
 if (e.shiftKey) {
 clicked_tile.gotoAndStop(5-clicked_tile.currentFrame);
 } else {
 if (clicked_tile.currentFrame==1) {
 clicked_tile.removeEventListener(
 MouseEvent.CLICK,onTileClicked);
 clicked_tile.buttonMode=false;
 // empty tile
 if (clickedValue==0) {
 floodFill(clickedRow,clickedCol);
 }
 // end of empty tile
 // numbered tile
 if (clickedValue>0&&clickedValue<9) {
 clicked_tile.gotoAndStop(2);
 clicked_tile.tile_text.text=clickedValue.toString();
 }
 // end of numbered tile
 // mine
 if (clickedValue==9) {
 clicked_tile.gotoAndStop(3);
 }
 // end of mine
 }
 }
}

Test the movie and you will be able to flag tiles.

Let's see what happened:

if (e.shiftKey) { ... }

The current block is executed only if the player presses Shift key when he clicks a tile.
shiftKey property of a MouseEvent event returns a Boolean value that is true if the
Shift key has been pressed or false otherwise.

clicked_tile.gotoAndStop(5-clicked_tile.currentFrame);

Minesweeper

[70]

This is a dirty way to make the tile switch between frame 1 to frame 4 using
currentFrame property. It's a quick dirty way to toggle between frame 1 and
frame 4.

if (clicked_tile.currentFrame==1) { ... }

This is how we ensure clicked tile is not a flagged one: it must be showing the
first frame.

Timer and game over
The last thing I am going to explain is the creation of a toolbar to show various
information such as a timer and the game over message.

The idea: We need to create a dynamic text in which we'll display various messages
according to game events. Also, a timer is needed.

The development: Create a new Movie Clip symbol called toolbar_mc and set it
as exportable for ActionScript. Leave all other settings at their default values, just
as you are used to. Draw anything you want, just remember to place a dynamic text
called message_text and embed Uppercase, Lowercase, Numerals, and Punctuation.
You can also use "Basic Latin", but try to embed as few characters as possible while
being able to write anything you want. This is the one I made, 550 pixels wide, as
wide as the stage, starting at 0,0.

Now change class level variables this way:

// class level variables
private const FIELD_W:uint=9;
private const FIELD_H:uint=9;
private const NUM_MINES:uint=10;
private var mineField:Array=new Array();
private var game_container:Sprite=new Sprite();
private var tile:tile_movieclip;
private var timer:Timer=new Timer(1000);
private var toolbar:toolbar_mc;
private var gameOver:Boolean=false;
// end of class level variables

Chapter 2

[71]

we need three more variables: a timer, that will tick every 1,000 milliseconds as you
can see from the constructor. Then we need the toolbar itself, and a Boolean variable
called gameOver that will be checked to see if the game is over. At the beginning, it's
set to false because the game has yet to start, so it cannot be over.

Now in main function after // end of tile creation add:

// time management and game over
toolbar = new toolbar_mc();
addChild(toolbar);
toolbar.y=stage.stageHeight-toolbar.height;
timer.start();
timer.addEventListener(TimerEvent.TIMER,onTick);
// end of time management and game over

Here we add the toolbar to the Display List. To place it at the bottom of the
stage I used:

toolbar.y=stage.stageHeight-toolbar.height;

stageHeight stage property returns the current height of the stage, in pixels.

The last two lines are used to start the timer and add a listener, as seen during the
making of the Concentration game.

Here it is the onTick function that will be called each time the timer event listener is
triggered (every second):

Private function onTick(e:TimerEvent):void {
 toolbar.message_text.text="Elapsed time: "+e.target.
currentCount+"s";
}

As you can see, the function just updates the message text in the toolbar with the
number of elapsed seconds. currentCount property returns the number of times the
timer event has been triggered, that in our case is the number of elapsed seconds.

The last thing to do is stopping the game when the player hits a mine and eventually
write a message in the toolbar.

Modify the onTileClicked function this way:

function onTileClicked(e:MouseEvent) {
 if (! gameOver) { ... }
}

Minesweeper

[72]

Now the content of the entire function will be executed only if gameOver value is
false. Since it's defined as false, it will always be executed until something sets
gameOver to true. Here is how we are doing it: in onTileClicked function change
the mine management this way:

// mine
if (clickedValue==9) {
 clicked_tile.gotoAndStop(3);
 timer.removeEventListener(TimerEvent.TIMER,onTick);
 toolbar.message_text.text="BOOOOOOOM!!!";
 gameOver=true;
}
// end of mine

First, we remove the timer event listener, then we write a message in the toolbar
saying it's game over, and finally we set gameOver to true. At this time, the player
won't be able to click any other mine.

Test the movie and play with all these new features.

No sudden death
There is still the "sudden death" issue, that happens when the player makes their first
click on a mine. This must be prevented.

The idea: Avoiding sudden death is simple: just create the mine field after the player
clicked on the first tile, setting such a tile as an empty one.

The development: The development of this feature does not introduce anything
new, so you should be able to figure out by yourself how it works. I just cut/pasted
some code from main to onTileClicked function.

This is how class level variables block changes:

// class level variables
...
private var firstClick:Boolean=true;
// end of class level variables

Main function now does not fill mineField array with mines and digits:

public function Main() {
 // mine field creation
 ...
 // end of mine field creation

Chapter 2

[73]

 // look! No more placing mines and placing digits!
 // tile creation
 ...
 // end of tile creation
 // time management and game over
 ...
 // end of time management and game over
}

Mines and digits creation are delegates to onTileClicked function:

private function onTileClicked(e:MouseEvent):void {
 if (! gameOver) {
 var clicked_tile:tile_movieclip=e.currentTarget as tile_movieclip;
 var clickedRow:uint=clicked_tile.nrow;
 var clickedCol:uint=clicked_tile.ncol;
 if (firstClick) {
 firstClick=false;
 // placing mines
 var placedMines:uint=0;
 var randomRow,randomCol:uint;
 while (placedMines<NUM_MINES) {
 randomRow=Math.floor(Math.random()*FIELD_H);
 randomCol=Math.floor(Math.random()*FIELD_W);
 if (mineField[randomRow][randomCol]==0) {
 if (randomRow!=clickedRow||randomCol!=clickedCol) {
 mineField[randomRow][randomCol]=9;
 placedMines++;
 }
 }
 }
 // end of placing mines
 // placing digits
 for (var i:uint=0; i<FIELD_H; i++) {
 for (var j:uint=0; j<FIELD_W; j++) {
 ...
 }
 }
 ...
 // end of placing digits
 }
 ...
 }
}

Minesweeper

[74]

Just notice how the blocks to place mines and digits are inserted in the function and
are executed only once, when firstClick is true. Then, it's set to false.

Also, this if:

if (randomRow!=clickedRow||randomCol!=clickedCol) { ... }

Prevents the mine being placed on the first tile the player clicked. Remember to
declare i and j in your loops since they are function level variables that have not
been declared yet in onTileClicked function.

Enjoy your Minesweeper.

It was almost easier to code than to play.

Summary
The most important thing you learned in this chapter is the DisplayObjects
hierarchy. Also, dealing with recursive functions at such an early stage will
help you master a feature that will help you in the creation of countless games.

Chapter 2

[75]

Where to go now
Although the prototype is completed, there are a couple of things you should do to
complete your training:

1. Organize the frames to show using constants. Define four constants called
something like COVERED_TILE, UNCOVERED_TILE, MINE_TILE and FLAG_TILE,
then call gotoAndStop(FLAG_TILE) rather than gotoAndStop(4).

2. Print an "end game" message when the player solves the game. You could
count the uncovered tiles, and when they are FIELD_W*FIELD_H-NUMBER_OF_
MINES, the game is solved.

Connect Four
Connect Four is a two player turn-based game played on a vertical six row–seven
column grid. At the beginning of the game, the grid is empty and each player has 21
discs of the same color, normally red or yellow. At each turn a player drops a disc
from the top of the grid in a column of his choice, making it fall straight down and
occupying the lowest available space in the column. Then it's the other player's turn
to move. The aim of the game is connecting four discs of the same color next to each
other horizontally, vertically or diagonally. The first player to connect four discs
wins. If the board is filled without there being any winning matches then the
game is a draw.

Through this chapter, you will create a fully working Connect Four prototype,
learning among other techniques, these principles:

Creating smooth animations
Splitting the script into little functions to improve code readability
and reusability
Animating DisplayObjects with AS3, without using the timeline
Triggering events related to stage and frames
Creating sub classes to manage DisplayObjects
Forcing a loop to stop using break
Accessing parents of DisplayObjects
Basic artificial intelligence to make the computer play the game

Also, recursive functions and DisplayObject hierarchy introduced during the making
of Minesweeper will be carried on.

•

•

•

•

•

•

•

•

Connect Four

[78]

Defining game design
You are making a game people played as a real board game during their childhood,
so they reasonably expect the overall look and feel to be the same. Apart from board
and discs colors, the most important feature is the gravity. When a player places one
of his discs, it must fall down as in the real board game.

A brief list of game characteristics can be described as:

Single player game against CPU.
Player will use red discs. CPU will use yellow discs.
The game randomly chooses which color will move first.
Discs falls down as if they were governed by gravity.
Some kind of artificial intelligence to make CPU player competitive.

You also should draw the graphics a way which reminds the original game, with a
blue board filled by red and yellow discs.

The game field
As usual, the first thing we have to do is defining and setting up the game field.

The idea: Just like Minesweeper game, the best solution is a two-dimensional array
representing the six rows and seven columns. The first index determines the row,
and the second index determines the column.

Then, any element can have these values:

0: an empty cell.
1: a cell occupied by player one.
2: a cell occupied by player two.

Look at this picture with a typical Connect Four situation:

•

•

•

•

•

•

•

•

Chapter 3

[79]

On the left, array indexes for each cell. On the right, array values to represent
board's situation.

When the game starts, all cells are empty, so the entire array must be filled
with zeros.

The development: Create a new file (File | New) then from New Document
window select Actionscript 3.0. Set its properties as width to 640 px, height to
480 px, background color to #FFFFFF (white), and frame rate to 30. Also define
the Document Class as Main and save the file as connect4.fla.

Showing smooth animations
There's a difference between previous game settings and this one. Apart from the
size, that's larger than what we saw in previous chapters for an aesthetic choice,
I set the frame rate to 30 frames per second.

Unlike games as Concentration and Minesweeper, Connect Four will include
animations. The average human eye will see the individual frames on an animation
(or a movie) if the frame rate is lower than a certain amount of frames per second
(fps). In films, using 24fps along with motion blur, eyes get tricked and they won't
be able to see individual frames anymore, as if they were looking at a smooth
animation. Without motion blur, some people are able to see individual frames up
to 30 fps and more, according to the complexity of the scene. On the other hand,
a frame rate that's too fast will negatively affect the performance, if games aren't
played on high end computers.

A good choice if you have to show animations is 30fps, as they are a good
compromise between smoothness and performance. Anyway if you want eye
proof animations, I suggest you use 60fps, keeping an eye on performances.

Without closing connect4.fla, create a new file and from New Document window
select ActionScript 3.0 Class. Save this file as Main.as in the same path you saved
connect4.fla.

Now in Main.as file write:

package {
 import flash.display.Sprite;
 public class Main extends Sprite {
 private var gameField:Array;
 public function Main() {
 prepareField();
 }
 private function prepareField():void {

Connect Four

[80]

 gameField=new Array();
 for (var i:uint=0; i<6; i++) {
 gameField[i]=new Array();
 for (var j:uint=0; j<7; j++) {
 gameField[i].push(0););
 }
 }
 trace("the field: "+gameField);
 }
 }
}

Test the movie and in the output window you will see:

the field: 0,0
,0,0,0,0,0,0,0,0,0,0,0,0

That's what you've already seen when you created a new array filled with zeros
during Concentration or Minesweeper development.

You should be familiar with this code as there is nothing new. At the end of the
script, gameField array will be a two-dimensional 6x7 array filled with zeros.

But I want you to notice the content of Main function:

prepareField();

There's nothing more than a call to prepareField function which manages
gameField array. Why use a function just to execute only once a block of
code we always inserted into Main class until now?

Splitting the code
There are three reasons why you should always split the code: first, this practice
improves script readability. Remember that script readability is everything when
you aren't working on your projects for a while. It's easier to see what this script is
supposed to do:

connectToServer();
displaySplashScreen();
startTheMusic();

rather than this one:

// connecting to server
...
... // big set of instructions to connect to the server

Chapter 3

[81]

...
// display splash screen
...
... // big set of instructions to display the splash screen
...
// starting the music
...
... // big set of instructions to start the music
...

With the first method, the one you'll be using from now on, you can easily see what
the script does just looking at the first three lines. You don't have to read anything
more unless you want to check how the functions connect to the server, display
splash screen or start the music. The second script is not as intuitive, although there
are comments, especially if a lot of lines of code are required to connect to the server,
display splash screen, and so on.

Second, in large scripts you will find yourself cutting and pasting code from one
position to another. It's a normal practice because as the script grows and includes
more features, you may want to execute some branches of code in a different order,
or under different conditions. Cutting and pasting an one-line function call is much
simpler than selecting a large block of code and moving it here and there. There are
good chances you will end leaving some lines in the wrong place, causing you a big
headache when it's time to debug.

The third, and most important reason, is splitting the code into little functions will
allow you to easily reuse your code for future projects. You may not want to make
just one game in your career, so quickly locating and editing existing and already
tested functions will speed up development.

Back to Connect Four, once the array representing the board has been created, it's
time to draw the board itself.

Adding the board
The first thing we will place on the stage is the game board.

The idea: We just need to draw a game board that looks like the one in the original
board game. A rectangle with a series of holes will fit our needs.

Connect Four

[82]

The development: In connect4.fla, create a new Movie Clip symbol called
board_movieclip and set it as exportable for ActionScript. Leave all other settings
at their default values, just like you did in previous chapters. Then draw a rectangle
with registration point at 0,0 and create the holes, doing something like this:

From the picture you can easily determine the size of the board, in pixels:

width: 60 pixels * 7 columns + 5 pixels * 2 = 430 pixels
height: 60 pixels * 6 rows + 5 pixels * 2 = 370 pixels

You are free to give your board the size and shape you want, but during this chapter
I will refer to these sizes, so if you are an absolute beginner I suggest you draw the
board the same way I did.

Placing the board to stage
Once the board is completed, you have to add it to the stage. First, you need to
declare a variable to construct the board and add it to Display List.

Change your class level variables this way:

private var gameField:Array;
private var board:board_movieclip;

board is the variable name and board_movieclip is the type.

•

•

Chapter 3

[83]

Let's add it to Display List. Add a new line to Main function:

public function Main() {
 prepareField();
 placeBoard();
}

Following the rule to split the code, we delegate to placeBoard function the dirty job
and keep clean Main function.

This is placeBoard function:

private function placeBoard():void {
 board=new board_movieclip();
 addChild(board);
 board.x=105;
 board.y=100;
}

The function(s) just creates a board_movieclip instance and adds it to Display List,
just like you made a dozen times' to 'you've done a dozen times.

Just notice this time I set x and y position manually (directly inserting values)
rather than using DisplayObject's width property like I did during the creation of
Minesweeper and Concentration.

If you don't plan to change assets' size in the future, inserting numerical values is
quicker because you don't have to deal with a lot of constants.

In this case it only happens once, but I am showing you the basic principle. While
in games like Minesweeper and Concentration I may want to increase/decrease the
number of elements in the game to make gameplay easier or harder, Connect Four
will be always played on a 7x6 board, so I preferred to position the board using
numerical values.

Anyway, this line:

board.x=105;

and this one:

board.x=(stage.stageWidth-board.width)/2;

Would have placed the board in the same place since (640-430)/2=105.

Connect Four

[84]

Test the movie: you will see your board horizontally centered on the stage.

But it's time to make another improvement to the code.

Creating more classes
Do you remember the creation of the Concentration game, when I told you to ignore
the alert saying "A definition for the document class could not be found in the
classpath, so one will be automatically generated in the SWF file upon export."?

You can keep ignoring it, but this time you will create the famous "definition
for the document class", that is a file like Main.as, with the class relative to
board_movieclip.

Delete these two lines from placeBoard function, as we will position board object in
its own class.

board.x=105;
board.y=100;

Test the movie and you will see the board aligned with the upper-left corner of the
stage. That's ok because you just removed x and y properties.

Chapter 3

[85]

Without closing connect4.fla, create a new file and from New Document window
select ActionScript 3.0 Class. Save this file as board_movieclip.as in the same path
you saved connect4.fla and Main.as.

Then enter this code:

package {
 import flash.display.Sprite;
 public class board_movieclip extends Sprite {
 public function board_movieclip() {
 x=105;
 y=100;
 }
 }
}

Test the movie and you will see the board correctly placed again in the stage.

What happened? As you can see, the script has the same structure as Main.as.
There's the package definition, there are imported packages/classes, class and
constructor function names are the same as the filename, and so on.

The main difference, and this is the core concept, is that this class is the definition
of a board_movieclip object. In other words, every time a new board_movieclip
instance is created, the content of board_movieclip function is executed.

In this case, we are only talking about a couple of properties, but during this book
you will see how important it is to create a custom class for every actor you will
place in the game.

Also notice how properties are directly assigned with:

x=105;
y=100;

while in Main class to achieve the same result you had to write:

board.x=105;
board.y=100;

This is because you are working directly with board_movieclip class, so every
property directly refers to it.

Now that you have learned how to create custom classes, you will see how easy and
quick it is to manage objects this way.

Connect Four

[86]

Placing the disc
Once the board has been created, it's time to draw the discs.

The idea: There are two types of disc, a red one and a yellow one. We will create a
Movie Clip symbol with two frames, one for each color of disc and each player.

The development: In connect4.fla, create a new Movie Clip symbol called
disc_movieclip and set it as exportable for ActionScript.

Timeline contains:

frame 1: a red disc, used by player one (the human)
frame 2: a yellow disc, used by player two (the computer)

Both discs have a 60 pixel diameter and registration point at 0,0.

To use them in the game, modify Main.as class level variables this way:

private var gameField:Array;
private var board:board_movieclip;
private var disc_container:Sprite = new Sprite();
private var disc:disc_movieclip;

disc_container is the DisplayObject that will contain all discs, while disc is a
disc_movieclip instance. We want to create a container to place all discs behind the
board although they are added once the board is already on stage, and without any
container they will overlap it.

•

•

Chapter 3

[87]

Change Main function:

public function Main() {
 prepareField();
 placeBoard();
 placeDisc(Math.floor(Math.random()*2)+1);
}

There is a call to a new function called placeDisc with an argument. If you
remember random numbers generation, you should see such argument can be
1 or 2. That's the number of the player who will begin the game.

Then it's time to modify placeBoard function to add discs container. It forms part of
the board, since it will keep all discs behind board DisplayObject.

private function placeBoard():void {
 board=new board_movieclip();
 addChild(disc_container);
 disc_container.x=board.x;
 disc_container.y=board.y;
 addChild(board);
}

The interesting thing of new lines isn't their content, but their sequence. In these few
lines you will find the magic of Display List hierarchy:

board=new board_movieclip();

First, a new instance of board_movieclip is created. At this time, board_movieclip
function in board_movieclip.as file is executed, setting its x and y properties
respectively to 105 and 100.

addChild(disc_container);
disc_container.x=board.x;
disc_container.y=board.y;

Then board_movieclip is added to Display List, and is moved in the same position
as the board, simply setting x and y properties at the same values the board has.

addChild(board);

Only at this point, the board is added to Display List. This way, it will be placed
in front of the disc container, at the same coordinates. Refer to the creation of
Minesweeper game if you're unfamiliar with Display List depths and hierarchy.

Connect Four

[88]

Obviously disc_container's x and y properties could have been manually set to
105 and 100 respectively as we did with the board but I wanted you to see what
happens when an instance of a DisplayObject is created and what happens when
such object is added to Display List.

placeDisc function wants one unsigned integer and does not return anything. If you
don't need a function to return anything, just make it return a type of void.

private function placeDisc(player:uint):void {
 disc=new disc_movieclip(player);
 disc_container.addChild(disc);
}

This function simply creates a new disc_movieclip instance and adds it to Display
List as a child of disc_container. This way the disc will be placed behind the board.

Notice how player value is passed as an argument to the instance. There's nothing
strange as we are just passing an argument to a function, no matter if it is a simple
function or a constructor.

Just like you created board_movieclip.as, create disc_movieclip.as and write:

package {
 import flash.display.MovieClip;
 public class disc_movieclip extends MovieClip {
 public function disc_movieclip(player:uint) {
 gotoAndStop(player);
 }
 }
}

This time the main function disc_movieclip wants an argument, the
aforementioned player number we created in Main function. At the moment,
the function just displays frame 1 or 2 according to player value.

But there's something new. Did you notice it? This package imports MovieClip class
and disc_movieclip class extends MovieClip. All classes we've seen until now
imported and extended Sprite class. Why does this one use MovieClip?

Because MovieClip DisplayObject can have any number of frames in its timeline,
while Sprite has no timeline. That is, Sprite can be meant as a MovieClip with just
one frame.

So, when the timeline of the main function of your DisplayObject contains more
than one frame, use it to extend MovieClip. If it contains only one frame, use it to
extend Sprite.

Chapter 3

[89]

In this case, board_movieclip extends a Sprite because it has only one frame, while
disc_movieclip extends a MovieClip because it has two frames.

Obviously you have to take care of the number of frames only if you are creating a
specific class for a DisplayObject.

Test the movie and you will see something like this:

The disc can be red or yellow, according to Math.floor(Math.random()*2)+1 result.

The disc is placed on disc_container DisplayObject so that the board overlaps it
even if the disc was added after the board. Also, notice how the disc has its origin
placed at the origin of disc_container, that has the same origin of the board.

This demonstrates how DisplayObject children inherit, among other things, the
position of their father.

You can access a DisplayObject when it's instantiated even if it's not
added to Display List yet.
Extend Sprite class when you deal with DisplayObjects with only one
frame in their timeline or with no timeline at all.
Extend MovieClip class when you deal with DisplayObjects with more
than a frame in their timeline.
DisplayObject children inherit the position from their parents.

Now you will need to let the player choose in which column he wants to place
the disc.

Moving the disc
There are lots of ways to let the player choose which column to play, but to preserve
the look and feel of the original board game you should make him select the column
moving the disc over it. Obviously you can't allow the player to freely move the disc,
but you will have to lock y coordinate and let the player move the disc horizontally
with the mouse.

Connect Four

[90]

The idea: Let the player move the disc with the mouse along x-axis to select the
column where the disc should be dropped. It looks simple, but leads to two problems:

What happens when the player moves the disc outside the game board?
What happens when the player moves the disc inside the game board,
but in a position unclear to determine which column he's choosing?

This picture resumes the possible disc positions:

From left to right:

An illegal place: too far on the left
A legal place: perfectly aligned over a column
An illegal place: not perfectly aligned with any column
An illegal place: too far on the right

You must make the player have a clear idea of the column he is about to pick, so
while he/she will be able to move the mouse anywhere, the disc will move only in
legal positions.

So you must check whether the disc is on a legal place or not, and in this case, adjust
its position to the closest legal place.

The problem is the player can move the mouse at any time, updating the disc
position and forcing us to make the check.

We need a way to continuously check for mouse and disc position. To our help here
comes a new listener that will do the task: Event.ENTER_FRAME.

ENTER_FRAME is triggered continuously in conjunction with the frame rate, at
every new frame. It will become the most used listener because it will help you to
manage animations and to make necessary operations that need to be executed
at every frame.

•

•

•

•

•

•

Chapter 3

[91]

Just for your information, there is a specific listener that triggers mouse movements
called MouseEvent.MOUSE_MOVE but I prefer you to familiarize yourself with
ENTER_FRAME first, showing the former event later in the book.

The development: The disc must have an enter frame event listener that will manage
the horizontal position at every frame. We also need to save the current column
position in a class level variable to make it available through the entire class, when
we'll manage clicks, animations, and more features.

Change disc_movieclip.as this way:

package {
 import flash.display.MovieClip;
 import flash.events.Event;
 public class disc_movieclip extends MovieClip {
 private var currentColumn:int;
 public function disc_movieclip(player:uint) {
 gotoAndStop(player);
 addEventListener(Event.ENTER_FRAME,onEnterFrame);
 }
 private function onEnterFrame(e:Event) {
 moveHorizontally();
 }
 private function moveHorizontally():void {
 currentColumn=Math.floor((stage.mouseX-this.parent.x)/60);
 if (currentColumn<0) {
 currentColumn=0;
 }
 if (currentColumn>6) {
 currentColumn=6;
 }
 x=35+60*currentColumn;
 y=-40;
 }
 }
}

Test the movie, and move the mouse around the screen. You will see the disc placing
only in legal places.

Let's see how we managed disc movement:

import flash.events.Event;

Connect Four

[92]

Importing Event class. This class contains the listener we are looking for.

private var currentColumn:int;

A class level variable to store the value of the current column the disc is on.

addEventListener(Event.ENTER_FRAME,onEnterFrame);

Event.ENTER_FRAME is the listener that will be triggered in conjunction with
the frame rate, added as usual with addEventListener. Once triggered, it calls
onEnterFrame function. It's like telling the script to execute onEnterFrame function
at every frame. This is exactly what we needed.

private function onEnterFrame(e:Event) {
 moveHorizontally();
}

This is the onEnterFrame function. There's only a call to another function,
moveHorizontally. Although this may seem redundant, we are just at an early stage
of the game, so obviously onEnterFrame function will do a lot more things once the
game is completed.

currentColumn=Math.floor((stage.mouseX-this.parent.x)/60);

This is the core line of the function, that determines the current column position
according to mouse x-coordinate this way:

We exactly know the x-boundary between a column and the next one, so with a
simple formula we can determine which column the mouse is hovering over.

Chapter 3

[93]

Also notice how you can directly access the stage with stage keyword and how you
can access the father of a DisplayObject using parent keyword.

if (currentColumn<0) {
 currentColumn=0;
}

Since the stage is wider than the mouse, currentColumn may have negative values if
the mouse is on the far left of the board. We want to prevent this happening, so if the
column would be negative, we set it to zero.

if (currentColumn>6) {
 currentColumn=6;
}

This is the same concept applied when the mouse is on the far right.

x=35+60*currentColumn;
y=-40;

Finally, the disc is centered over the selected column.

Test the movie and you will be able to move the disc exactly over one of the seven
columns, while you can move the mouse anywhere you want.

Applying game rules
Rules define legal player moves and make the game balanced. You have to ensure
players cannot break the rules or they might be able to cheat.

Unlike some other "put some symbols in a row" games like Tic Tac Toe that
let you place your move in every empty spot, in Connect Four you can't place
discs everywhere.

In the real world, discs fall down to occupy the lowest available space in each
column. Moreover, players can't place a disc on a completely filled column.

Unfortunately, the program does not know we are playing on a vertical board
where discs fall, and that a disc is a solid entity that does not physically fit in a fully
completed column. The whole game field is just an array, a bunch of indexed numbers.

So these are the two golden rules you need to apply:

1. If a column is already fully occupied, you can't place a disc in it.
2. If the column has some free spaces, your disc will be placed on the

lowest one.

Connect Four

[94]

Look at this picture:

In the previous picture, on the left there is a typical Connect Four situation. On
the right, green discs represent the possible moves. No discs can be placed on the
third column.

The idea: Once a player selects a column to drop the disc, the script must check
whether it's a legal move or not.

The development: It's easier than it may seem. A column is a legal move when it has
at least one space available. Since columns are filled from bottom to top, we can say a
free column must have the highest row empty.

Checking for possible columns
Before we can determine how long a disc will fall down a column, we have to know
in which columns we can make a move.

In your Main.as file, add this function:

public function possibleColumns():Array {
 var moves_array = new Array();
 for (var i:uint=0; i<7; i++) {
 if (gameField[0][i]==0) {
 moves_array.push(i);
 }
 }
 return moves_array;
}

possibleColumns returns an array with all the columns a player can place the
disc in.

Chapter 3

[95]

Also I want you to notice that this is the first function different to the one with the
same name of the class that is declared as public. That's because the program will
need to access this function from within disc_movieclip class.

var moves_array = new Array();

Constructing a new array called moves_array, that will store all possible
column indexes.

for (var i:uint=0; i<7; i++) { ... }

for loop to go through all seven columns.

if (gameField[0][i]==0) { ... }

This is the core of the function: checking if the upper row of the i-th column is
empty. That's all you need to know to say whether a column is playable or not.

moves_array.push(i);

If we found the i-th column to be playable, then add it to the array.

return moves_array;

And finally return the array with all possible columns.

It's raining discs
Then add the other function: this function has two arguments: the column where we
are going to place the disc, and the player who is placing it.

The function will be executed only after checking the column is a legal one, so we
assume we will find at least an empty space.

It updates the game field and returns the row where the disc is going to be placed.

public function firstFreeRow(column:uint,player:uint):int {
 for (var i:uint=0; i<6; i++) {
 if (gameField[i][column]!=0) {
 break;
 }
 }
 gameField[i-1][column]=player;
 return i-1;
}

Connect Four

[96]

While possibleColumns scans all columns, firstFreeRow scans all rows

for (var i:uint=0; i<6; i++) { ... }

for loop to go through all six rows, from top to bottom.

if (gameField[i][column]!=0) { ... }

The core of the function: checking if the i-th row of a given column is occupied

break;

If you find an occupied row in a playable column, you don't need to reiterate the
loop anymore because you already found what you were looking for. break stops
processing a loop.

gameField[i-1][column]=player;

If the i-th row of a playable column is occupied, then the (i-1)th row is the
first free row, from bottom to top. That's where the player placed the disc, so we
assign player value to gameField[i-1][column]. Now the array is updated at
the latest move.

return i-1;

Returns i-1, that is the index of the first free row.

Determining a cell value (if any)
We are working behind the scenes, so we need to add a function to return the
value of a cell, or -1 if it does not exist, just like we did during the creation of
Minesweeper.

private function cellValue(row:uint,col:uint):int {
 if (gameField[row]==undefined||gameField[row][col]==undefined) {
 return -1;
 } else {
 return gameField[row][col];
 }
}

It will come in hand later, moreover it was developed at no cost since it has already
been created and tested during the making of Minesweeper. Do you understand the
importance of having little functions to use again and again?

Chapter 3

[97]

public functions can be accessed by all classes which attempt to
use them.
break stops processing a loop.

Now you have everything you need to determine whether a move is valid, and when
the disc will stop once dropped in a valid column.

Making your move
Everything is ready to let the player drop his/her disc. You can check whether each
column represents a legal move or not, and you know which row will occupy a
falling disc, given a column.

The idea: When the player clicks the mouse, we check if the column he picked is a
legal one, in this case we place the disc in the proper row and let the other player
move. At the moment, there isn't a computer-controlled opponent yet, so you will
have to play both with red and yellow discs.

The development: To make the player drop the disc with a mouse click, you have to
import MouseEvent class in disc_movieclip.as to use your old friend MouseEvent.
CLICK listener.

import flash.display.MovieClip;
import flash.events.Event;
import flash.events.MouseEvent;

You also need to know which player is playing through all classes, so add a new
variable to class level variables.

private var currentColumn:int;
private var currentPlayer:uint;
private var par:Main;

currentPlayer will store the number of the currently moving player.

par variable is called this way because it is a shortcut of parent that's a reserved
name. It will be used to access Main class (as its type suggests) to execute the function
to check for a valid move.

Connect Four

[98]

Waiting for the disc to be added to stage
We said the player drops the disc with a mouse click. Unfortunately, we cannot place
a mouse click listener to the disc itself as it would trigger only if the player clicks on
the disc. It's not that intuitive, as the player expects to place the disc with the mouse
and release it by clicking anywhere.

We can solve this issue by adding a mouse click listener on the stage, and once
triggered, check if it's a possible move and eventually place the disc in its place
and pass the turn to the other player.

Unfortunately, a programmer's life is never easy, and it's not possible for
DisplayObjects access the stage if they aren't on the Display List yet.

AS3 comes to our help with Event.ADDED_TO_STAGE that triggers when a
DisplayObject is added to the Display List, both directly and as a child of an
object added to the Display List.

With this in mind, it's easy to rewrite disc_movieclip function:

public function disc_movieclip(player:uint) {
 currentPlayer=player
 addEventListener(Event.ADDED_TO_STAGE,onAdded);
}

First, the content of player argument is stored in class level variable currentPlayer
to make it available through the entire class.

Then, it's time to add the listener:

addEventListener(Event.ADDED_TO_STAGE,onAdded);

to execute onAdded function when the disc is added to the stage.

onAdded function will manage all listeners including the one to look for a mouse
click on the stage.

private function onAdded(e:Event) {
 par=this.parent.parent as Main;
 gotoAndStop(currentPlayer);
 addEventListener(Event.ENTER_FRAME,onEnterFrame);
 stage.addEventListener(MouseEvent.CLICK,onMouseClick);
}

Let's see the core lines:

par=this.parent.parent as Main;

Chapter 3

[99]

now par can access all Main functions.

stage.addEventListener(MouseEvent.CLICK,onMouseClick);

The previous line of code adds the mouse click event listener to the stage. It's
possible because we are sure the disc has been already added to the stage,
thanks to Event.ADDED_TO_STAGE listener.

At each click, the listener calls onMouseClick function:

private function onMouseClick(e:MouseEvent) {
 if (par.possibleColumns().indexOf(currentColumn)!=-1) {
 dropDisc();
 }
}

This function checks if the current column is a legal move by searching into the array
of possible columns the value of currentColumn with indexOf method as you've
already seen during the creation of Concentration game.

If it's a legal move, then dropDisc function is executed.

private function dropDisc():void {
 y=35+par.firstFreeRow(currentColumn,currentPlayer)*60;
 removeEventListener(Event.ENTER_FRAME,onEnterFrame);
 stage.removeEventListener(MouseEvent.CLICK,onMouseClick);
 par.placeDisc(3-currentPlayer);
}

This function just places the disc in the first available place and removes the listeners
as this disc won't be moved anymore.

Then this line:

par.placeDisc(3-currentPlayer);

passes the hand to the other player

Test the movie and nothing will happen, except this message in the Compiler
Errors window.

1195: Attempted access of inaccessible method placeDisc through a reference with
static type Main.

This is the error you get when you try to call a private function (in this case
placeDisc) you don't have the permission to access.

Connect Four

[100]

To make the script work, simply replace private with public.

public function placeDisc(player:uint):void {
 disc=new disc_movieclip(player);
 disc_container.addChild(disc);
}

Test the movie again and everything will work fine.

Checking for victory
Applying rules to correctly place discs is not enough: you have to check if a player's
move makes him win the game. You know a player wins the game when he connects
four (or more) discs next to each other horizontally, vertically, or diagonally.

So we need to check for victory.

The idea: A very cheap way to check for a victory would be scanning the entire field
at every turn, disc after disc, until you find four discs in a row. I don't want you to
use brute force to check for victory, so let's have a deeper look at game mechanics.

According to Connect Four rules, we can say:

A player can win, but cannot lose during his turn. There's no way a player
can end the game during his turn, unless he wins. This means when red
plays, only red can win. So only red discs can form a winning streak.
When a player wins, the winning move is always the latest disc he played.
So the latest disc is part of the winning streak.

With these two concepts in mind, we only need to check whether the latest dropped
disc is part of a winning combination of the same color.

What does this mean? That when a player drops a disc, we must look for
contiguous discs of the same color at its left and right and see if they form a
horizontal winning streak.

If not, we will check for the discs of the same color below the latest disc, and if they
don't form a vertical winning streak, repeat the same thing with the diagonals.

•

•

Chapter 3

[101]

Look at this picture:

Once the disc in the middle column has been dropped, we check in seven directions
(all possible eight directions minus the top vertical one, because the latest dropped
disc can't have another disc above it) and we stop when we find an empty space or a
disc with another color.

It's easy to see we have a winning move when the sum of the number of
adjacent discs in a direction is three. The fourth, winning disc is the one the
player just dropped.

The development: The first thing to do is enabling the script to count how many
discs of the same color we can find at a given direction.

Just like with Minesweeper flood fill, you don't know how many adjacent discs you
will find in each direction, so the best thing to do is use a recursive function to do
the job.

In Main.as file add this function:

private function getAdj(row:uint,col:uint,row_inc:int,col_inc:int):
uint {
 if (cellValue(row,col)==cellValue(row+row_inc,col+col_inc)) {
 return 1+getAdj(row+row_inc,col+col_inc,row_inc,col_inc);
 } else {
 return 0;
 }
}

it wants four arguments:

row (unsigned integer): the current row position
col (unsigned integer): the current column position
row_inc (integer): the value to add to row to get the position of the disc to
examine in the desired direction

•

•

•

Connect Four

[102]

col_inc (integer): the value to add to column to get the position of the disc
to examine in the desired direction

Knowing the structure of the array which represents the game field, we can make the
function look in all seven directions this way:

row_inc = 0, col_inc = 1 scans for the disc on the right
row_inc = 0, col_inc = -1 scans for the disc on the left
row_inc = 1, col_inc = 0 scans for the disc on the bottom
row_inc = -1, col_inc = 1 scans for the disc on the upper-right
row_inc = 1 , col_inc = -1 scans for the disc on the bottom-left
row_inc = 1, col_inc = 1 scans for the disc on the bottom-right
row_inc = -1, col_inc = -1 scans for the disc on the upper-left

We can now write a function called checkForVictory which given a row and a
column counts all adjacent discs of the same color in the four directions and returns
true if a direction at least contains more than two adjacent discs (that is, three
adjacent discs plus the one you just dropped = four in a row!) and false if not.

public function checkForVictory(row:uint,col:uint):Boolean {
 if (getAdj(row,col,0,1)+getAdj(row,col,0,-1)>2) {
 return true;
 } else {
 if (getAdj(row,col,1,0)>2) {
 return true;
 } else {
 if (getAdj(row,col,-1,1)+getAdj(row,col,1,-1)>2) {
 return true;
 } else {
 if (getAdj(row,col,1,1)+getAdj(row,col,-1,-1)>2) {
 return true;
 } else {
 return false;
 }
 }
 }
 }
}

The four directions are scanned this way:

if (getAdj(row,col,0,1)+getAdj(row,col,0,-1)>2) { ... }

•

•

•

•

•

•

•

•

Chapter 3

[103]

counts horizontal adjacent tiles

if (getAdj(row,col,1,0)>2) { ... }

counts vertical adjacent tiles. Notice I only look at the bottom

if (getAdj(row,col,-1,1)+getAdj(row,col,1,-1)>2) { ... }

counts diagonal adjacent tiles, from top-right to bottom-left

if (getAdj(row,col,1,1)+getAdj(row,col,-1,-1)>2) { ... }

counts diagonal adjacent tiles, from bottom-right to top-left.

Now we need a class level variable called currentRow to make the value of the row
we just placed the disc in available through the entire class

private var currentColumn:int;
private var currentPlayer:uint;
private var par:Main;
private var currentRow:uint;

and in dropDisc function we assign currentRow the value of the played row, and
only later we update y property.

private function dropDisc():void {
 currentRow=par.firstFreeRow(currentColumn,currentPlayer);
 y=35+currentRow*60;
 removeEventListener(Event.ENTER_FRAME,onEnterFrame);
 stage.removeEventListener(MouseEvent.CLICK,onMouseClick);
 checkForVictory();
}

Finally we have to check for a winning move. checkForVictory function will take
care of it.

private function checkForVictory():void {
 if (! par.checkForVictory(currentRow,currentColumn)) {
 par.placeDisc(3-currentPlayer);
 } else {
 trace("Player "+currentPlayer+" wins!!!");
 }
}

This just sees if checkForVictory function returns true or false. In the first case,
the game is over and a message is displayed in the output window. In the second
case, the turn passes to the other player.

Connect Four

[104]

Animating discs
Until now, when you place a disc in the board, it jumped to its final position. As said
at the beginning of this chapter, recreating the look and feel of the original board
game is important, so you will need to create the animation of the falling disc.

It's nothing difficult, as we will only create a linear movement without simulating
gravity and collision bounces.

The idea: When the player selects a column to play, show the disc falling down
moving along its vertical axis. The other player can't play until the disc reaches
its place.

The development: The main question is: how long will the disc fall?

We don't know and we don't care how long the disc will fall, because we know its
final position we already used it in dropDisc function with this line:

y=35+par.firstFreeRow(currentColumn,currentPlayer)*60;

So we just have to move the disc along its vertical axis until it reaches the
final position.

Anyway, we will need to use such position here and there around the script, so it's
better to create a new class level variable to make the final position available through
all classes.

private var currentColumn:int;
private var currentPlayer:uint;
private var par:Main;
private var currentRow:uint;
private var fallingDestination:uint=0;

fallingDestination will store the y position we must reach with the disc. Its
starting value is zero because it's not falling yet.

We still don't know for how long the disc will fall, but for sure it will take a while.
Let's say more than a single frame. So we can't remove the enter frame event listener
as soon as the player drops the disc, or we won't be able to see the animation.

Remove the listener from dropDisc function. Also remove checkForVictory call as
saying a player won before the disc stopped would look like a bug. I commented the
code you should remove.

private function dropDisc():void {
 currentRow=par.firstFreeRow(currentColumn,currentPlayer);
 fallingDestination=35+currentRow*60;

Chapter 3

[105]

 // removeEventListener(Event.ENTER_FRAME,onEnterFrame);
 stage.removeEventListener(MouseEvent.CLICK,onMouseClick);
 // checkForVictory();
}

Also at this time we can determine the falling destination of the disc:

fallingDestination=35+currentRow*60;

At the end of the function, you knew the final position of the disc and removed the
mouse click listener. That's enough. It's easy to see when fallingDestination is
greater than zero, then the disc must fall, because the player made his move.

Now, at every frame, you must tell the disc if it should move horizontally (the player
is selecting a column to move) or vertically (the player dropped the disc). Change
onEnterFrame function this way:

private function onEnterFrame(e:Event) {
 if (fallingDestination=0) {
 moveHorizontally();
 } else {
 moveVertically();
 }
}

This way you will keep moving the disc horizontally until fallingDestination
is different (and obviously greater) than zero. Then, moveVertically function will
handle the animation.

The animation itself
Animating the disc is not that hard once you know where it will end, because we
already decided it's just a linear motion. So you just need to move down the disc for
a certain amount of pixels until it reaches its destination. Defining such an amount is
the hardest decision. Let me explain the concept.

Connect Four

[106]

During the game, when the disc is moving horizontally, its y position is -40. Then, it
must reach 35+60*r where r is the number of the row. The total amount of pixels is
40+35+60*r = 75+60*r. To make a smooth, good looking animation, the disc must
move for the same amount of pixels at every frame, so it must be a number that
perfectly divides 60 and 75. The candidates in this case are 3, 5 and 15.

According to the amount of pixel per frame, the disc will fall at different speeds.

private function moveVertically():void {
 y+=15;
 if (y==fallingDestination) {
 fallingDestination=0;
 removeEventListener(Event.ENTER_FRAME,onEnterFrame);
 checkForVictory();
 }
}

Test the movie and you will see discs falling down as in the original board game.
You are almost done with the animation, but to make things work perfectly we
need to properly place the disc according to mouse position as soon as it's added
to the game.

private function onAdded(e:Event) {
 moveHorizontally();
 par=this.parent.parent as Main;
 gotoAndStop(currentPlayer);
 addEventListener(Event.ENTER_FRAME,onEnterFrame);
 stage.addEventListener(MouseEvent.CLICK,onMouseClick);
}

Calling moveHorizontally function as soon as the disc is added to the stage will do
the job.

Chapter 3

[107]

Making computer play
Playing Connect Four against yourself is not the best gaming experience ever. What
about making CPU play against you?

The idea: At the very beginning, the computer will randomly choose a move among
the possible columns and place the disc, without caring whether it is a good move
or not. This will help us to focus on the other things to fix to let the computer play.
Obviously, when the computer plays, the player cannot place discs, so we have to
remove some listeners when it's player two's turn.

The development: The first thing to change is onAdded function, because we want
the player to take control over the disc only when it's player one's turn.

Rewrite the function this way:

private function onAdded(e:Event) {
 par=this.parent.parent as Main;
 moveHorizontally();
 if (currentPlayer==1) {
 stage.addEventListener(MouseEvent.CLICK,onMouseClick);
 } else {
 computerMove();
 }
 gotoAndStop(currentPlayer);
 addEventListener(Event.ENTER_FRAME,onEnterFrame);
}

There aren't many changes, just some re-arrangement of the code. The core of the
function is this if statement:

if (currentPlayer==1) {
 stage.addEventListener(MouseEvent.CLICK,onMouseClick);
} else {
 computerMove();
}

because the mouse click listener is added only if the current player is a human,
otherwise computerMove function is called. Since computerMove uses some functions
defined in Main class, I had to place this line:

par=this.parent.parent as Main;

at the very beginning of the function, since par variable must be defined before
computerMove is executed.

Connect Four

[108]

Also, since computer player does not use mouse click listener, you may not want to
execute the line which removes the listener once the player dropped the disc.

Changing dropDisc function this way:

private function dropDisc():void {
 currentRow=par.firstFreeRow(currentColumn,currentPlayer);
 fallingDistance=35+currentRow*60;
 if (currentPlayer==1) {
 stage.removeEventListener(MouseEvent.CLICK,onMouseClick);
 }
}

will prevent removing the listener if the player is not human.

Everything is ready to let the computer make its move.

Unleashing CPU power
Finally it's time for the computer to make its move. At the moment it will be a
random move, so you just need to check for legal columns to move, and randomly
choose one of them.

The idea: Choose a random column among the possible ones and place the disc.

The development: This is computerMove function, to be inserted in
disc_movieclip.as:

private function computerMove():void {
 var possibleMoves:Array=par.possibleColumns();
 var cpuMove:uint=Math.floor(Math.random()*possibleMoves.length)
 currentColumn=possibleMoves[cpuMove];
 x=35+60*currentColumn;
 currentRow=par.firstFreeRow(currentColumn,currentPlayer);
 fallingDestination=35+currentRow*60;
}

Apart from computer decision, it works as if the player was human.

var possibleMoves:Array=par.possibleColumns();

possibleMoves variable stores the array with all legal columns.

var cpuMove:uint=Math.floor(Math.random()*possibleMoves.length)

Chapter 3

[109]

cpuMove is a random number between zero (included) and the number of elements
in possibleMoves array (excluded).

currentColumn=possibleMoves[cpuMove];

Now currentColumn variable takes the value of the cpuMove-th element of
possibleMoves array. That is, a random legal column.

The rest of the function just manages disc positioning and falling exactly in the same
way the script does when dealing with a human player.

Test the movie, and you will be able to play, and almost every time win, against
the computer.

Yes, even my grandmother would win. That's why artificial intelligence
algorithms exist.

Playing with AI: defensive play
While the creation of an algorithm to make the computer play perfectly is beyond
the scope of this book, we'll see the basics of artificial intelligence making the CPU
player at least trying not to let the human player win that easily.

The idea: When it's time to choose the column, don't pick it randomly among all
possible columns, but among the columns that can give the highest number of
connected discs if played by the opponent. Look at this picture:

The same board configuration, on the left the possible red moves with the number
of possible yellow streaks. The third column from the left is the best move, as it will
prevent yellow from winning. On the right, possible yellow moves. There are four
possible red moves that will make the red player have two discs in a row, so we'll
randomly choose a column among the second, the fifth, the sixth and the seventh
from the left.

Connect Four

[110]

The development: As said computerMove in disc_movieclip.as does not
randomly pick the column among all possible columns anymore, so we'll delegate
the choice of candidate columns to an external function. Change computerMove
this way:

private function computerMove():void {
 var possibleMoves:Array=par.think();
 var cpuMove:uint=Math.floor(Math.random()*possibleMoves.length)
 currentColumn=possibleMoves[cpuMove];
 x=35+60*currentColumn;
 currentRow=par.firstFreeRow(currentColumn,currentPlayer);
 fallingDistance=35+currentRow*60;
}

Now possibleMoves array will be populated by think function, defined in Main.as.

Let's see how it works:

public function think():Array {
 var possibleMoves:Array=possibleColumns();
 var aiMoves:Array=new Array();
 var blocked:uint;
 var bestBlocked:uint=0;
 for (var i:uint=0; i<possibleMoves.length; i++) {
 for (var j:uint=0; j<6; j++) {
 if (gameField[j][possibleMoves[i]]!=0) {
 break;
 }
 }
 gameField[j-1][possibleMoves[i]]=1;
 blocked=getAdj(j-1,possibleMoves[i],0,1)+getAdj(j-
1,possibleMoves[i],0,-1);
 blocked=Math.max(blocked,getAdj(j-1,possibleMoves[i],1,0));
 blocked=Math.max(blocked,getAdj(j-1,possibleMoves[i],-
1,1)+getAdj(j-1,possibleMoves[i],1,-1));
 blocked=Math.max(blocked,getAdj(j-1,possibleMoves[i],1,1)+getAdj(j
-1,possibleMoves[i],-1,-1));
 if (blocked>=bestBlocked) {
 if (blocked>bestBlocked) {
 bestBlocked=blocked;
 aiMoves=new Array();
 }
 aiMoves.push(possibleMoves[i]);
 }
 gameField[j-1][possibleMoves[i]]=0;
 }
 return aiMoves;
}

Chapter 3

[111]

This is your first step into AI world, so let me explain the function in detail:

var possibleMoves:Array=possibleColumns();

We start creating the same old array with all possible columns.

var aiMoves:Array=new Array();

aiMoves is the array that will contain the possible moves after being processed by
computer's AI.

var blocked:uint;
var bestBlocked:uint=0;

blocked will track how many connected discs I am blocking for each possible
column, while bestBlocked stores the highest number of connected discs blocked
so far.

for (var i:uint=0; i<possibleMoves.length; i++) {
 for (var j:uint=0; j<6; j++) {
 if (gameField[j][possibleMoves[i]]!=0) {
 break;
 }
 }
}

These two for loops and the if statement with the break to force the second for
to exit just helps you find the first free row (from bottom-to-top) for each possible
column just like the firstFreeRow function does.

gameField[j-1][possibleMoves[i]]=1;

At this time we know a disc can be placed at row j-1 and column
possibleMoves[i] so we update gameField array as if the human player (player 1)
placed a disc in it.

blocked=getAdj(j-1,possibleMoves[i],0,1)+getAdj(j-
1,possibleMoves[i],0,-1);
blocked=Math.max(blocked,getAdj(j-1,possibleMoves[i],1,0));
blocked=Math.max(blocked,getAdj(j-1,possibleMoves[i],-1,1)+getAdj(j-
1,possibleMoves[i],1,-1));
blocked=Math.max(blocked,getAdj(j-1,possibleMoves[i],1,1)+getAdj(j-
1,possibleMoves[i],-1,-1));

This is the core of the script: we are assigning blocked the maximum value of
adjacent discs found in the four directions.

Connect Four

[112]

Note as Math.max method returns the highest among two or more expressions.

At this time we know how many discs in a row would get the human player if
placing a disc at row j-1 and column possibleMoves[i].

if (blocked>=bestBlocked) {
 if (blocked>bestBlocked) {
 bestBlocked=blocked;
 aiMoves=new Array();
 }
 aiMoves.push(possibleMoves[i]);
}

This block manages the consequences of the previous check. We match blocked with
bestBlocked to see if it's the best possible player move so far or not. We can have
three cases:

1. blocked is greater than bestBlocked: this means placing a disc in the
current column causes to stop the longest streak of connected discs found
until now. It's the best move so far. We have to empty aiMoves array of all
previously inserted columns and insert this column value. Also, we need to
update bestBlocked value assigning it blocked value.

2. blocked is equal to bestBlocked: this means placing a disc in the current
column causes to stop the longest streak of connected discs found until
now, but there are other moves that would cause the same effect. We'll add
column value to aiMoves array as it's a possible move.

3. blocked is less than bestBlocked: this means we already found better
moves, so we are skipping it.

Finally, we have to restore gameField array:

gameField[j-1][possibleMoves[i]]=0;

and return the array of possible moves:

return aiMoves;

Test the movie now, and you will see the CPU playing in defensive mode. Now
beating it will require more skill.

Chapter 3

[113]

Summary
During the making of Connect Four you learned how to create smooth animations
on the fly and to create a basic computer artificial intelligence. Remember in board
games computer can play as an opponent, so you should always consider creating a
smart CPU player.

Where to go now
You should prove yourself creating an offensive play strategy. Defensive play only
tries to block the human player, without trying to beat it. It tries to draw. Try to make
the computer more aggressive trying to block the human player and at the same time
connecting more discs. This can be done in three steps:

1. Watch if there are winning moves. If there is a winning column, simply play
that column and don't care about the human player.

2. If there aren't winning moves, and playing defensively you get only one
column in aiMoves array, that is there's a move which will cause the most
damage to a human player, play that column.

3. If there aren't winning moves and playing defensively you get more than one
column in aiMoves array, don't pick a column randomly but choose the one
that will make you get the highest number of your discs in a row.

Once the computer is able to give you a real challenge, you can be proud of
your work.

Snake
Snake was one of the first video games to be released in arcades during the mid
1970s and it became a worldwide classic once Nokia included a version of the game
in its phones.

In the game the player controls a snake, typically represented with a sequence of
dots or characters, that moves in a maze and must pick up food while avoiding its
own body and the walls. When the snake eats food, its body becomes longer, making
it more difficult to move around the maze without hitting himself. The player can
move the snake in four directions (up, down, left, and right) but cannot stop it. Once
the snake hits its own body or a wall, it's game over.

In this chapter you will create a fully working Snake game, learning these concepts:

Adding DisplayObjects at a given index using addChildAt method
Calculating distance between two points in a tile-based environment
Using Point class to deal with points
Determining which DisplayObjects lie under a given point in the stage

But above all you'll learn that using arrays is not the only way to create a
tile-based game.

•

•

•

•

Snake

[116]

Defining game design
There are too many snake games out there with nothing more than a bunch of dots to
represent the snake, so we are going to make something with a better visual appeal.
One thing we will avoid is the "where's the head" effect. Look at these screenshots:

Can you tell me where the head of the snake is? You can't because there aren't any
specific graphics to represent the head. Our snake will have a head. Also, notice there
aren't any specific graphics to represent the snake when it turns. It's just another tile.

Also, try to play a classic snake and you will find how much a boring game it can be,
if you just play running in straight lines and grabbing the fruits once in a while as in
this picture:

Running in straight lines and making close U-turns can make this game
almost endless.

In our Snake game, the snake itself will have its own head, and for every fruit
collected, a random obstacle will appear in the game field, preventing players
from using the "run and U-turn" strategy and adding some challenge to the game.

Chapter 4

[117]

Array-based games versus Movie
Clip-based games
During the making of the previous games I showed how arrays can manage the
game behind the scene, while Movie Clips are just actors you place here and there
according to game array values.

Obviously Snake, for its tile-based game nature, can be also developed this way, but
I want you to learn another way of managing tile-based games.

This time you won't use any array, and you will handle all game events directly on
DisplayObjects.

Although Snake would be easier to develop using arrays, some kind of games,
especially non-tile-based games, cannot be developed using arrays, so you'd better
get used to DisplayObjects games management.

The entire process will be a bit more complicated but don't worry, the game is
quite easy.

The basic idea is to make the script understand what's happening in the game
directly looking at the various actors in the stage.

Preparing the field
Create a new file (File | New) then from New Document window select
Actionscript 3.0. Set its properties as width to 640 px, height to 480 px, background
color to #FFFFFF (white), and frame rate to 6. Also define the Document Class as
Main and save the file as snake.fla. I want you to note the low frame rate, set to
six. This is because we'll update snake position at every frame, without smooth
animations, as it's not required in these kind of games. Anyway, you can make the
game run at any number of frames per second, having a variable, with a counter, that
runs the update function and resets itself at every n frames. We'll discuss this at the
end of the chapter.

Drawing the graphics
Let's start drawing all the graphics. A snake prototype requires:

A background, such as a grass field
A "game over" overlay, used to add a dramatic effect when the game is over
The fruit (collectible)

•

•

•

Snake

[118]

The wall
The snake

They are all very easy to draw, except for the snake. In snake.fla, create four new
Movie Clip symbols and call them bg_mc for the background, game_over_mc for the
game over overlay, fruit_mc for the fruit, and obstacle_mc for the wall. Set them
all as exportable for ActionScript. Leave all other settings at their default values, just
like you did in previous chapters.

These are the objects I drew:

From left to right, the background and the game over overlay (which is a bit
transparent), both 640x480 pixels with registration point at 0,0. Then, the collectible
fruit and the deadly wall, with registration point at 0,0 and inside an imaginary
40x40 pixels square. This is also the size of the tile the game is based on.

Drawing the snake is a bit harder because you will need 10 frames.

In snake.fla, create a new Movie Clip symbol called the_snake_mc and set it as
exportable for ActionScript. Leave all other settings at their default values, just like
you did in previous chapters. Then draw your snake this way:

•

•

Chapter 4

[119]

Snake's pieces are also drawn with registration point at 0,0 and inside the imaginary
40x40 tile, just like the fruit and the wall.

Every frame represents a possible snake piece:

1. Snake's head heading left
2. Snake's head heading up
3. Snake's head heading right
4. Snake's head heading down
5. Vertical snake body
6. Horizontal snake body
7. Snake body going right then turning up or going down then turning left
8. Snake body going left then turning up or going down then turning right
9. Snake body going left then turning down or going up then turning right
10. Snake body going right then turning down or going up then turning left

That's a lot of frames, but this will give our snake a respectable look.

Placing the snake
Let's start placing the snake. Without closing snake.fla, create a new file and from
New Document window select ActionScript 3.0 Class. Save this file as Main.as in
the same path you saved snake.fla. Then write:

package {
 import flash.display.Sprite;
 public class Main extends Sprite {
 private const FIELD_WIDTH:uint=16;
 private const FIELD_HEIGHT:uint=12;
 private const TILE_SIZE:uint=40;
 private var the_snake:the_snake_mc;
 private var snakeDirection:uint;
 private var snakeContainer:Sprite= new Sprite();
 private var bg:bg_mc=new bg_mc();
 public function Main() {
 addChild(bg);
 placeSnake();
 }
 }
}

Snake

[120]

You should be used to seeing the making of a game start this way: we are importing
the required classes (Sprite in this case), defining some variables and constants,
and then creating the constructor. Let's see the constants and variables defined at
this stage:

FIELD_WIDTH: the width of the game field, in tiles. 16 tiles multiplied by
40 pixels means 640 pixels, the whole stage.
FIELD_HEIGHT: the height of the game field, in tiles.
TILE_SIZE: the size of a tile, in pixels.
the_snake: this variable will contain the snake itself.
snakeDirection: snake's direction, using numbers from 0, 1, 2, 3 to indicate
respectively left, up, right, and down.
snakeContainer: the DisplayObjectContainer that will contain the
snake itself.
bg: the background.

As you can see, Main constructor just adds the background to Display List then
delegates placeSnake function to place the snake on the game field.

The snake itself
placeSnake function has to place the snake in a random place of the field, facing a
random direction. Add this function to Main.as file:

private function placeSnake():void {
 addChild(snakeContainer);
 var col:uint=Math.floor(Math.random()*(FIELD_WIDTH-10))+5;
 var row:uint=Math.floor(Math.random()*(FIELD_HEIGHT-10))+5;
 snakeDirection=Math.floor(Math.random()*4);
 the_snake=new the_snake_mc(col*TILE_SIZE,row*TILE_
SIZE,snakeDirection+1);
 snakeContainer.addChild(the_snake);
 switch (snakeDirection) {
 case 0 : // facing left
 trace("left");
 the_snake = new the_snake_mc((col+1)*TILE_SIZE,row*TILE_SIZE,6);
 snakeContainer.addChild(the_snake);
 the_snake = new the_snake_mc((col+2)*TILE_SIZE,row*TILE_SIZE,6);
 snakeContainer.addChild(the_snake);
 break;
 case 1 : // facing up
 trace("up");

•

•

•

•

•

•

•

Chapter 4

[121]

 the_snake = new the_snake_mc(col*TILE_SIZE,(row+1)*TILE_SIZE,5);
 snakeContainer.addChild(the_snake);
 the_snake = new the_snake_mc(col*TILE_SIZE,(row+2)*TILE_SIZE,5);
 snakeContainer.addChild(the_snake);
 break;
 case 2 : // facing down
 trace("down");
 the_snake = new the_snake_mc((col-1)*TILE_SIZE,row*TILE_SIZE,6);
 snakeContainer.addChild(the_snake);
 the_snake = new the_snake_mc((col-2)*TILE_SIZE,row*TILE_SIZE,6);
 snakeContainer.addChild(the_snake);
 break;
 case 3 : // facing right
 trace("right");
 the_snake = new the_snake_mc(col*TILE_SIZE,(row-1)*TILE_SIZE,5);
 snakeContainer.addChild(the_snake);
 the_snake = new the_snake_mc(col*TILE_SIZE,(row-2)*TILE_SIZE,5);
 snakeContainer.addChild(the_snake);
 break;
 }
}

Let's see what's happening: first we need to add snakeContainer
DisplayObjectContainer to Display List.

addChild(snakeContainer);

Then, the snake will be placed in a random location of the game field, but at least five
tiles away from the edge. We do not want the snake to appear so close to game field
edge that the player won't be able to make it turn before it hits the edge and dies.

var col:uint=Math.floor(Math.random()*(FIELD_WIDTH-10))+5;

var row:uint=Math.floor(Math.random()*(FIELD_HEIGHT-10))+5;

Once we've decided where to place the snake, let's choose a random direction.

snakeDirection=Math.floor(Math.random()*4);

At this time, we can construct the snake itself. Look at the arguments, snake's vertical
and horizontal position, and the frame to show.

the_snake=new the_snake_mc(col*TILE_SIZE,row*TILE_
SIZE,snakeDirection+1);

Snake

[122]

Showing snakeDirection+1 frame will show frame 1 (snake's head heading left)
when direction is 0 (left), frame 2 (snake's head heading up) when direction is 1 (up),
and the same concept applies to frame 3 (right), and 4 (down).

Finally the snake is added to Display List.

snakeContainer.addChild(the_snake);

Before writing the_snake_mc class (at this time you should know there's such class
to be written), let's see what else we are doing in placeSnake function.

switch (snakeDirection) { ... }

We want to add two more pieces to the snake according to its direction, so we have
to use a switch statement to see which direction the snake is facing.

Let's see what happens when the snake is facing left, the remaining cases will follow
the same concept:

case 0 : // facing left
 trace("left");
 the_snake = new the_snake_mc((col+1)*TILE_SIZE,row*TILE_SIZE,6);
 snakeContainer.addChild(the_snake);
 the_snake = new the_snake_mc((col+2)*TILE_SIZE,row*TILE_SIZE,6);
 snakeContainer.addChild(the_snake);
 break;

What we do is add two more snake pieces to the right of its head (since it's heading
left, pieces representing the body will be added to the right) and showing frame 6,
which is the horizontal piece of the body of the snake.

The same concept is applied to all directions, showing frame 5 (the vertical piece of
the body of the snake) when the snake is heading up or down.

Now it's time to create the_snake_mc class itself: without closing snake.fla, create
a new file and from New Document window select ActionScript 3.0 Class. Save this
file as the_snake_mc.as in the same path you saved snake.fla. Then write:

package {
 import flash.display.MovieClip;
 public class the_snake_mc extends MovieClip {
 public function the_snake_mc(px:uint,py:uint,frm:uint) {
 x=px;
 y=py;
 gotoAndStop(frm);
 }
 }
}

Chapter 4

[123]

There is really nothing to say: the snake piece is just placed and the desired frame
is shown.

Test your movie and you will see your snake somewhere in the game field. In the
picture you can see the four possible directions with the snake heading left, up, right,
and down.

We are just creating a working code for snake placement, but there's room for
simplification.

Simplifying the code
Once you get a working code, don't stop. Try to make the code more readable and
maintainable, possibly reducing the number of lines.

Here's my simplified version of placeSnake function:

private function placeSnake():void {
 addChild(snakeContainer);
 var col:uint=Math.floor(Math.random()*(FIELD_WIDTH-10))+5;
 var row:uint=Math.floor(Math.random()*(FIELD_HEIGHT-10))+5;
 var tmpCol,tmpRow,evenDir:uint;
 snakeDirection=Math.floor(Math.random()*4);
 the_snake=new the_snake_mc(col*TILE_SIZE,
 row*TILE_SIZE,snakeDirection+1);
 snakeContainer.addChild(the_snake);
 // remove the entire switch
 for (var i:uint=1; i<=2; i++) {
 evenDir = snakeDirection%2;
 tmpCol = col+i*(1-evenDir)*(1-snakeDirection);
 tmpRow = row+i*(2-snakeDirection)*evenDir;
 the_snake = new the_snake_mc(tmpCol*TILE_SIZE,tmpRow*TILE_SIZE,
 6-evenDir);
 snakeContainer.addChild(the_snake);
 }
}

Snake

[124]

If you test the movie you will see it works the same way as before, but it's much
shorter, as the switch statement has been replaced with a for loop.

To do it, first I added three new variables. tmpRow and tmpCol are temporary
variables used to manipulate row and col variables without changing their values.
evenDir will tell us if the snake is placed in an even direction (0 or 2, horizontal) or
in an odd direction (1 or 3, vertical).

The for loop that replaced the switch statement goes from 1 to 2 as there are two
snake pieces to add after its head.

evenDir = snakeDirection%2;

At this time evenDir will be 1 if snakeDirection is odd, or 0 if snake direction
is even.

tmpCol = col+i*(1-evenDir)*(1-snakeDirection);
tmpRow = row+i*(2-snakeDirection)*evenDir;

These two lines just assign to tmpCol and tmpRow the column and row position
according to row, col, and evenDir.

the_snake = new the_snake_mc(tmpCol*TILE_SIZE,tmpRow*TILE_SIZE,6-
evenDir);

Finally the snake piece is constructed. Notice how evenDir also modifies the frame
to show, in the third argument.

Now that we have a simpler routine, let's make the snake move.

Letting the snake move
Snake is a simple yet fast paced game because you can't stop the snake. It will always
be moving in its direction.

The idea: Make the snake move by a tile in the current direction at every frame.

The development: To move the snake at every frame, we need to import the class to
handle ENTER_FRAME event. Add it to Main.as:

import flash.display.Sprite;
import flash.events.Event;

Chapter 4

[125]

And in Main constructor, we need to add the listener:

public function Main() {
 addChild(bg);
 placeSnake();
 addEventListener(Event.ENTER_FRAME,onEnterFr);
}

Now I would like to introduce four Boolean functions we are going to create, called
is_up, is_down, is_left, and is_right.

These functions, given two pieces of the snake called from and to passed as
arguments, return true if to snake piece is up (or down, or left, or right) respect
the down piece.

This is is_up function:

private function is_up(from:the_snake_mc,to:the_snake_mc):Boolean {
 return to.y<from.y&&from.x==to.x;
}

It's checking that to's y property is less than from's and that both pieces have the
same x property. In this case, to piece will be above from.

The remaining three functions work in the same way. This is is_down:

private function is_down(from:the_snake_mc,to:the_snake_mc):Boolean {
 return to.y>from.y&&from.x==to.x;
}

This is is_left:

private function is_left(from:the_snake_mc,to:the_snake_mc):Boolean {
 return to.x<from.x&&from.y==to.y;
}

And this is is_right:

private function is_right(from:the_snake_mc,to:the_snake_mc):Boolean {
 return to.x>from.x&&from.y==to.y;
}

But the core of the script is in onEnterFr function, that will handle snake's movement.

Snake

[126]

Before you start typing, let me explain how snake movement will work. This phase
can be divided into three steps:

1. Moving the head according to snake's direction.
2. At this time, there will be a gap between the head and the rest of the snake.

Fill the gap with a new snake piece, connecting the head with the rest of
the body.

3. The snake is longer than it should be now, so the tail is removed.

All these three steps will be performed in the same frame, so the player will only see
the moving snake.

This is onEnterFr function:

private function onEnterFr(e:Event) {
 var the_head:the_snake_mc=snakeContainer.getChildAt(0) as the_snake_
mc;
 var new_piece:the_snake_mc=new the_snake_mc(the_head.x,the_head.
y,1);
 snakeContainer.addChildAt(new_piece,1);
 var the_body:the_snake_mc=snakeContainer.getChildAt(2) as the_snake_
mc;
 var p:uint=snakeContainer.numChildren;
 var the_tail:the_snake_mc=snakeContainer.getChildAt(p-1) as the_
snake_mc;
 var the_new_tail:the_snake_mc=snakeContainer.getChildAt(p-2) as the_
snake_mc;
 the_head.moveHead(snakeDirection,TILE_SIZE);
 // brute force
 if (is_up(new_piece,the_head)&&is_down(new_piece,the_body)) {
 new_piece.gotoAndStop(5);
 }
 if (is_down(new_piece,the_head)&&is_up(new_piece,the_body)) {
 new_piece.gotoAndStop(5);
 }
 if (is_left(new_piece,the_head)&&is_right(new_piece,the_body)) {
 new_piece.gotoAndStop(6);
 }
 if (is_right(new_piece,the_head)&&is_left(new_piece,the_body)) {
 new_piece.gotoAndStop(6);
 }
 // end of brute force
 snakeContainer.removeChild(the_tail);
}

Chapter 4

[127]

Let's see how it works:

var the_head:the_snake_mc=snakeContainer.getChildAt(0) as the_snake_
mc;

You already dealt with getChildAt method during the making of Minesweeper.
I am using this method to retrieve the DisplayObject that contains the head
of the snake. Being the first DisplayObject I added to snakeContainer
DisplayObjectContainer, using snakeContainer.getChildAt(0) will
always make you find the head.

var new_piece:the_snake_mc=new the_snake_mc(the_head.x,the_head.y,1);

new_piece is the piece of the snake which will connect the head with the rest of the
body. It will be placed in the same position of the head, as we are about to move the
head. Note that I am telling you to show frame 1. It's an arbitrary frame as the real
frame to be shown has to be decided.

snakeContainer.addChildAt(new_piece,1);

The newly created piece of the snake is now added to snakeContainer
DisplayObjectContainer.

I want to focus on the way the new piece is being added to snakeContainer
DisplayObjectContainer: I am not using addChild method, but addChildAt method.

What's the difference? While addChild adds the DisplayObject at the top of the
hierarchy, overlapping previously added DisplayObjects and showing the newly
added DisplayObject in front of them, with addChildAt I can decide the index of the
DisplayObject to add. If you specify a currently occupied index, the DisplayObject
that already exists at such index, as well as all other DisplayObjects existing at higher
indexes will be moved up one position.

Snake

[128]

This picture will help you to understand the difference:

When the yellow box is added with addChildAt, you can define its index and
DisplayObjects indexes are shifted to make the yellow box fit. When the yellow
box is added with addChild, it's simply added in the highest index available.

At this time we have the head at index zero, and the newly added snake piece at
index 1. Where can we find the rest of the snake? Obviously starting from index 2,
so we will define the_body variable as the first snake piece which connects the head
with the piece we should place.

var the_body:the_snake_mc=snakeContainer.getChildAt(2) as the_snake_
mc;

To know the snake's length, in pieces, you have to use numChildren property. We'll
save it in a variable called p.

var p:uint=snakeContainer.numChildren;

Can you tell me where I can find the tail? Look how we can find it at index p-1.

var the_tail:the_snake_mc=snakeContainer.getChildAt(p-1) as the_snake_
mc;

At this time we defined all key snake pieces, and we can proceed with
snake's movement. We'll delegate it to the moveHead function we'll define
in the_snake_mc class.

Chapter 4

[129]

the_head.moveHead (snakeDirection,TILE_SIZE);

once the head is moved, we need a bit of brute force to know which frame we have
to show in the piece at index 1, the one we just added.

if (is_up(new_piece,the_head)&&is_down(new_piece,the_body)) {
 new_piece.gotoAndStop(5);
}

If the head is above the piece and the body is below the piece, then we have to show
frame 5 because we are dealing with a vertical snake.

Finally, the tail is removed.

snakeContainer.removeChild(the_tail);

The rest of the code follows the same concept, while moveHead function in
the_snake_mc class is made this way:

public function moveHead(dir:uint,pixels:uint):void {
 switch (dir) {
 case 0 :
 x-=pixels;
 break;
 case 1 :
 y-=pixels;
 break;
 case 2 :
 x+=pixels;
 break;
 case 3 :
 y+=pixels;
 break;
 }
 gotoAndStop(dir+1);
}

There's nothing special in it, as we are just moving the head acting on x or y
properties, showing the appropriate frame.

Snake

[130]

Test the movie, and you will see the snake moving, running out of the stage. Here it
is a "bullet time" of what's happening:

Although the snake is moved in three steps, the player won't see partial steps as
everything is happening in the same frame. The same concept that caused a problem
during the making of Concentration, when the player wasn't able to see two flipped
cards before we inserted a timer to pause the game, this time comes to our aid.

Now, it's time to make the player control the snake.

Controlling the snake
The player will be able to control the snake with arrow keys.

The idea: As the player presses one of the arrow keys, snake's head must move in
the appropriate direction.

The development: First, we need to import the class to manage keyboard events:

import flash.display.Sprite;
import flash.events.Event;
import flash.events.KeyboardEvent;

Then, in Main function, we need to place the listener:

public function Main() {
 addChild(bg);
 placeSnake();
 addEventListener(Event.ENTER_FRAME,onEnterFr);
 stage.addEventListener(KeyboardEvent.KEY_DOWN,onKeyD);
}

Now each time the player presses a key, onKeyD function is called.

Chapter 4

[131]

We decided snakeDirection's possible values are 0, 1, 2, and 3 respectively for left,
up, right, and down directions, and the respective keyCode values are 37, 38, 39, and
40, so we can manage snakeDirection writing onKeyD function this way:

private function onKeyD(e:KeyboardEvent):void {
 if (e.keyCode>=37&&e.keyCode<=40) {
 snakeDirection=e.keyCode-37;
 }
}

snakeDirection will change only when keyCode ranges from 37 to 40,
both included. Then subtracting 37 from keyCode will give us the correct
snakeDirection value.

We also need to add some more if statements to the brute force part of code
which allows us to display the correct frame according to head and rest of the
body positions.

// brute force
...
if (is_left(new_piece,the_head)&&is_up(new_piece,the_body)) {
 new_piece.gotoAndStop(7);
}
if (is_up(new_piece,the_head)&&is_left(new_piece,the_body)) {
 new_piece.gotoAndStop(7);
}
if (is_up(new_piece,the_head)&&is_right(new_piece,the_body)) {
 new_piece.gotoAndStop(8);
}
if (is_right(new_piece,the_head)&&is_up(new_piece,the_body)) {
 new_piece.gotoAndStop(8);
}
if (is_right(new_piece,the_head)&&is_down(new_piece,the_body)) {
 new_piece.gotoAndStop(9);
}
if (is_down(new_piece,the_head)&&is_right(new_piece,the_body)) {
 new_piece.gotoAndStop(9);
}
if (is_left(new_piece,the_head)&&is_down(new_piece,the_body)) {
 new_piece.gotoAndStop(10);
}
if (is_down(new_piece,the_head)&&is_left(new_piece,the_body)) {
 new_piece.gotoAndStop(10);
}

Snake

[132]

There isn't that much to explain, I just included all possible combinations of head
positions and rest of the body positions relative to the new piece of the snake I
already added.

Test the movie and try to change the snake's direction using arrow keys.

In the picture are four typical ways the snake can turn.

Also notice that if you press the arrow key at the opposite of the snake direction, that
is you press LEFT when the snake is moving RIGHT, the snake will cross over itself
and a little graphic glitch appears, as in this picture:

Don't worry as we won't allow it to happen, later in this chapter. But keep in mind
you have to deeply test your games to prevent unwanted situations happening.

Placing fruits
Placing fruits is the hardest part of the making of this game, because you will learn
some new concepts and techniques.

The idea: Placing a fruit in a random spot is not just a matter of picking a couple of
random coordinates and adding the fruit.

Fruits will be placed on the game according to these two principles:

1. A fruit cannot be placed in a tile occupied by the snake
2. A fruit cannot be placed too close to the snake's head. It would be too easy,

both playing and programming the game

Chapter 4

[133]

The development: Let's divide things into steps: first, we have to define the variable
to handle fruit_mc Movie Clip. Add this new class level variable:

private const FIELD_WIDTH:uint=16;
private const FIELD_HEIGHT:uint=12;
private const TILE_SIZE:uint=40;
private var the_snake:the_snake_mc;
private var snakeDirection:uint;
private var snakeContainer:Sprite= new Sprite();
private var bg:bg_mc=new bg_mc();
private var fruit:fruit_mc;

Then, in Main function, we'll call the function (yet to be written) that will place the
fruit. The game must begin with a fruit on the stage, so add it immediately after you
created the snake:

public function Main() {
 addChild(bg);
 placeSnake();
 placeStuff();
 addEventListener(Event.ENTER_FRAME,onEnterFr);
 stage.addEventListener(KeyboardEvent.KEY_DOWN,onKeyD);
}

Notice I called the function placeStuff rather than place_fruit because the same
function will be used to place random walls.

We said we won't place fruit too close to snake's head, so we need a function to
calculate the distance between the snake's head and the fruit, or between any two
points. I bet you are thinking about Pythagorean Theorem, where the distance we
require is the hypotenuse of the triangle built over the two points. It's certainly one
solution, but it's not the one we need. Look at this picture:

Snake

[134]

Let's say we want to calculate the distance between A and B. The blue line is the
unique shortest path and it's called Euclidean distance, but it's not what we are
looking for, because the snake can move only horizontally or vertically, tile by tile.
So the correct distance between A and B is represented by the red or the green lines.
Following both paths, you will get from A to B crossing nine tiles.

Following this concept, we can say the distance between two points is the sum of the
absolute difference of their coordinates.

This way to calculate the distance between two points is called Manhattan Distance,
because this way of moving from one point to another resembles the way cars move
along the grid-like layout of the island of Manhattan.

With this concept in mind, let's create a function to calculate the Manhattan distance
between two points:

private function manhattan_dist(x1:uint,x2:uint,y1:uint,y2:uint):uint
{
 return Math.abs(x1-x2)+Math.abs(y1-y2);
}

manhattan_dist function wants four arguments, all unsigned integers,
representing the x-and y-coordinates of the points, and returns the distance
as an unsigned integer.

Now, let's dive into the hard part: placeStuff function will place the fruit on
the stage.

private function placeStuff():void {
 var the_head:the_snake_mc=snakeContainer.getChildAt(0) as
 the_snake_mc;
 var placed:Boolean=false;
 var col:uint;
 var row:uint;
 var point_to_watch:Point;
 var children:Array;
 while (!placed) {
 col=Math.floor(Math.random()*FIELD_WIDTH)*TILE_SIZE;
 row=Math.floor(Math.random()*FIELD_HEIGHT)*TILE_SIZE;
 point_to_watch=new Point(col+TILE_SIZE/2,row+TILE_SIZE/2);
 children=stage.getObjectsUnderPoint(point_to_watch);
 if (children.length<2&&manhattan_dist(the_head.x,col,
 the_head.y,row)>60) {
 placed=true;
 }
 }

Chapter 4

[135]

 fruit =new fruit_mc();
 fruit.x=col;
 fruit.y=row;
 addChild(fruit);
 fruit.name="fruit";
}

As you can see, there's a couple of things you haven't seen before, so let's analyze the
function line-by-line:

var the_head:the_snake_mc=snakeContainer.getChildAt(0) as the_snake_
mc;

Getting the head of the snake using getChildAt method. You already know the head
is always at index 0.

var placed:Boolean=false;

Boolean variable to tell us if we already placed the fruit or not. Obviously its starting
value is false because we did not place any fruit yet.

var col:uint;
var row:uint;

A couple of unsigned integers to store row and column numbers where to place
the fruit.

var point_to_watch:Point;

A Point variable called point_to_watch. Point represents a location in a
two-dimensional coordinate system and its constructor is Point(x,y) where x
represents the horizontal axis and y represents the vertical axis.

var children:Array;

Simply creating a new array. It's called children because it will contain all
DisplayObjects that lie under a given point.

while (!placed) { ... }

This while loop repeats the code until placed variable becomes true, which means
we successfully placed the fruit. The concept is similar to the one we used to place
mines during the creation of Minesweeper game. We keep on trying to place fruits,
or mines, until we randomly choose a legal position.

col=Math.floor(Math.random()*FIELD_WIDTH)*TILE_SIZE;
row=Math.floor(Math.random()*FIELD_HEIGHT)*TILE_SIZE;

Snake

[136]

Generating the candidate row and column where the fruit is to be placed. Notice I
multiplied the result by TILE_SIZE because I am not working with arrays so I need
to know the pixel where to place the fruit rather than the position in an array.

point_to_watch=new Point(col+TILE_SIZE/2,row+TILE_SIZE/2);

Constructing point_to_watch variable and assigning it the coordinate of the center
of the hypothetical tile in the row-th row and the col-th column. A hypothetical
tile is a square whose sides are TILE_SIZE long, so you will find its center adding
TILE_SIZE/2 to the coordinates of its upper-left point.

children=stage.getObjectsUnderPoint(point_to_watch);

This is the core of the function. getObjectsUnderPoint method returns an array of
objects that lie under the specified point and are children (or children of children,
and so on) of the DisplayObjects Container which invoked the method.

if (children.length<2&&manhattan_dist(the_head.x,col,the_head.
y,row)>60) { ... }

This if statement checks the length of children array to be less than 2. If there is
only one DisplayObjects under point_to_watch, it must be the ground, so the tile
is free.

Also, the if checks for the Manhattan distance to be greater than 60 pixels.

If both conditions are true, then this line is executed:

placed=true;

this means we found a legal position where to place the fruit, so we set placed to
true to exit the while loop.

The remaining lines:

fruit =new fruit_mc();
fruit.x=col;
fruit.y=row;
addChild(fruit);
fruit.name="fruit";

just construct and add the fruit to Display List, placing it in the chosen position.

Also, the fruit has a name, fruit. This will help us later.

Chapter 4

[137]

To work with Point variables, we need to import a new class, so add it:

import flash.display.Sprite;
import flash.events.Event;
import flash.events.KeyboardEvent;
import flash.geom.Point;

Test the game, and a juicy fruit will appear on the stage.

Now the snake has a reason to live.

Eating fruits
Once the fruit is placed, eating is easy, let's say a piece of cake. A fruit cake,
of course.

The idea: In the same way we checked for an empty tile to place the fruit in, we'll
check for the tile occupied by the snake's head looking for a fruit. If we find a fruit,
we have to remove it and place a new one elsewhere.

The development: Once the head has moved, we have to retrieve its middle point
and see if there's a fruit under such point. Before the end of onEnterFr function, add
this code:

var point_to_watch:Point=new Point(the_head.x+TILE_SIZE/2,the_head.
y+TILE_SIZE/2);
var children_in_that_point:Array=stage.getObjectsUnderPoint(point_to_
watch);
for (var i:uint=0; i<children_in_that_point.length; i++) {
 switch (children_in_that_point[i].parent.name) {
 case "fruit" :
 removeChild(fruit);
 placeStuff();
 break;
 }
}

Snake

[138]

Test the movie and eat a fruit: it will disappear and a new fruit will appear in
another location.

In the picture, the snake eats a fruit and suddenly a new one is generated in a
random position (with the principles explained before).

Let's see how it works:

var point_to_watch:Point=new Point(the_head.x+TILE_SIZE/2,the_head.
y+TILE_SIZE/2);

Creates a Point variable with the coordinates of the center of the snake's head.

var children_in_that_point:Array=stage.getObjectsUnderPoint(point_to_
watch);

Retrieves the children under such point with getObjectsUnderPoint method.

for (var i:uint=0; i<children_in_that_point.length; i++) { ... }

This for loop scans through the array filled with DisplayObjects that lie under
point_to_watch point.

switch (children_in_that_point[i].parent.name) { ... }

The switch statement checks the name of the i-th DisplayObject in children's array.
Notice I had to write:

children_in_that_point[i].parent.name

with parent rather than:

children_in_that_point[i].name

because in children_in_that_point[i] you'll find the shape (that is the red circle
representing the fruit) that has no name. We named the DisplayObjects, which is
shape's parent.

Then with this case:

case "fruit" :

Chapter 4

[139]

we'll execute the following block of code if the name we found is fruit.

removeChild(fruit);
placeStuff();
break;

Here we remove fruit DisplayObject and call placeStuff function again, to place
another fruit.

This way as soon as the snake eats a fruit, a new one is placed.

Making the snake grow
When the snake eats a fruit, it must grow. This is what makes the game increase
its difficulty.

The idea: We know at every frame the snake moves its head according to its
direction, a new piece is added to link the head with the rest of the body, and the
tail is deleted.

To make the snake grow, we simply won't delete the tail for a given number of
frames if the snake just ate a fruit. Adding a new piece without deleting anything
will make the snake grow.

The development: We need a variable to know if the snake has just eaten a fruit, and
eventually how many frames have passed since that moment. Add a new class level
variable called justEaten that will start at 0 (the snake hasn't just eaten) and will
contain the number of frames the snake will grow.

private const FIELD_WIDTH:uint=16;
private const FIELD_HEIGHT:uint=12;
private const TILE_SIZE:uint=40;
private var the_snake:the_snake_mc;
private var snakeDirection:uint;
private var snakeContainer:Sprite= new Sprite();
private var bg:bg_mc=new bg_mc();
private var fruit:fruit_mc;
private var justEaten:uint=0;

Snake

[140]

Now we have to modify onEnterFr function adding a line in the switch statement
when the snake eats a fruit. Simply assign justEaten a value representing the
number of frames the snake will grow. In this case, I set it to 3, but you are free
to play with this number and see how it modifies the gameplay.

case "fruit" :
 justEaten=3;
 removeChild(fruit);
 placeStuff();
 break;

Finally, at the end of the brute force branch of the code, we must remove the tail only
if justEaten is equal to 0, or decrease its value otherwise.

At the end of onEnterFr function, include this line:

snakeContainer.removeChild(the_tail);

into an if statement to execute it only if justEaten is equal to 0.

if (justEaten==0) {
 snakeContainer.removeChild(the_tail);
} else {
 justEaten--;
}

When justEaten is greater than 0, the tail is no longer removed, we only decrease
justEaten value. The snake will grow for three frames each time it eats a fruit.

Test the game and pick up some fruit, to see your snake grow.

On the left, the snake is about to eat a fruit. On the right, the snake gets three pieces
longer after it digested the fruit.

Placing walls
To make the game a little more challenging, we need to add some walls as the
snake grows.

Chapter 4

[141]

The idea: Every time a fruit is placed, a wall is added to the stage too, with the
same criteria: in an empty cell, and never within a given distance. I'll refer walls as
"obstacles" since they look more like square blocks rather than walls.

The development: There's not that much to explain here, as it's exactly the same
concept you used to place fruits. Anyway, let's add a new class level variable called
obstacle of obstacle_mc type.

private const FIELD_WIDTH:uint=16;
private const FIELD_HEIGHT:uint=12;
private const TILE_SIZE:uint=40;
private var the_snake:the_snake_mc;
private var snakeDirection:uint;
private var snakeContainer:Sprite= new Sprite();
private var bg:bg_mc=new bg_mc();
private var fruit:fruit_mc;
private var justEaten:uint=0;
private var obstacle:obstacle_mc;

Then, at the end of placeStuff function, copy and paste the same code you used to
create the fruit, just adapting it to place an obstacle rather than the fruit.

private function placeStuff():void {
 ...
 placed=false;
 while (!placed) {
 col=Math.floor(Math.random()*FIELD_WIDTH)*TILE_SIZE;
 row=Math.floor(Math.random()*FIELD_HEIGHT)*TILE_SIZE;
 point_to_watch=new Point(col+TILE_SIZE/2,row+TILE_SIZE/2);
 children=stage.getObjectsUnderPoint(point_to_watch);
 if (children.length<2&&manhattan_dist(the_head.x,col,
 the_head.y,row)>60) {
 placed=true;
 }
 }
 obstacle =new obstacle_mc();
 obstacle.x=col;
 obstacle.y=row;
 addChild(obstacle);
 obstacle.name="obstacle";
}

Snake

[142]

Test the movie, and your game will start with a fruit and an obstacle, and each time
the snake collects a fruit, a new obstacle is added.

In the previous picture, on the left a typical game at the very beginning, and on the
right the same game after the snake ate seven fruits. There are eight obstacles on the
stage, the first one plus one for each fruit eaten.

Making the snake die
Tired of playing with "God Mode" on? Ok, let's make the snake die.

The idea: The snake will die if one of these conditions is verified:

1. The snake's head hits a wall
2. The snake's head hits any part of the snake's body
3. The snake's head leaves the stage

In some versions of the game, when the snake leaves the stage crossing through one
boundary, it appears on the opposite side, but in this game the snake cannot leave
the stage.

Also, the snake has only one life, so when the snake dies, it's game over.

The development: Each time the snake moves, we must check if the head is in the
same tile occupied by an obstacle or by a piece of the snake's body. Also, we must
check if the head is in the stage.

Chapter 4

[143]

But first, let's see what should happen when the game is over. We have to remove
all listeners as the player won't be able to interact with the keyboard and the snake
won't move anymore. Also, we will finally use the game_over_mc object to give a
dramatic feel to the snake's death.

This is die function that will handle snake's death:

private function die():void {
 removeEventListener(Event.ENTER_FRAME,onEnterFr);
 stage.removeEventListener(KeyboardEvent.KEY_DOWN,onKeyD);
 var game_over:game_over_mc = new game_over_mc();
 addChild(game_over);
}

As said, it removes the listeners and places game_over_mc on stage.

Now let's see when we should call such function. Add two more cases to the switch
statement in onEnterFr function:

switch (children_in_that_point[i].parent.name) {
 case "fruit" :
 justEaten=3;
 removeChild(fruit);
 placeStuff();
 break;
 case "snake body" :
 case "obstacle" :
 die();
 break;
}

In this case die function will be executed when the name of the i-th children in
a given point is both obstacle and snake body. Notice how name property of a
DisplayObject can have spaces.

You know all obstacles have name property equal to obstacle but there aren't any
children with name property equal to snake body.

Snake

[144]

You can set this property to new_piece variable after you declared it, in onEnterFr
function this way:

private function onEnterFr(e:Event) {
 var the_head:the_snake_mc=snakeContainer.getChildAt(0) as the_snake_
mc;
 var new_piece:the_snake_mc=new the_snake_mc(the_head.x,the_head.
y,1);
 new_piece.name="snake body";
 ...
}

To see if snake's head left the stage, we just have to compare its x and y properties
with the width and height of the stage. I know width and height are respectively
640 and 480 but I wanted to make a small recap of stageWidth and stageHeight
properties you already met during the making of Connect Four.

Add this code just before onEnterFr function ends.

if (the_head.x<0) {
 die();
}
if (the_head.x>=stage.stageWidth) {
 die();
}
if (the_head.y<0) {
 die();
}
if (the_head.y>=stage.stageHeight) {
 die();
}

Obviously all these if conditions could have been placed in the same if statement
with an || (logical OR) operator but I wanted to keep them separated just in case
you want to upgrade your Snake game showing different game over screens
according to the way the snake dies.

Anyway, let's see the meaning of each if statement:

if (the_head.x<0) { ... }

returns true if x property of the_head object is less than zero. This means the head
left the stage to the left.

if (the_head.x>stage.stageWidth) { ... }

Chapter 4

[145]

returns true if x property of the_head object is equal or greater than the
stage width.

Why does the second if check for x property to be equal or greater while the first
one just checked for x property to be smaller (and not to be equal)? That's because x
property is 0 when the snake is on the first column so it has to be less than 0 to make
you know he left the stage. When the snake is on the rightmost column, x property
is 600, so we have to wait for it to be 640 (stage's width) to say the snake is out
of the screen. This happens because the head is centered into an imaginary
40x40 pixels rectangle.

The following picture will help you clarify the concept.

The snake is alive when x property is 0 or 600, and it dies when x property is -40 or
640. There are a lot of ways to translate this concept into an if statement, and the
one I showed you is only one of a number of possibilities.

The remaining two if statements apply the same concept to y property.

Test the movie and you can play with a mortal snake. No more "God Mode".

Snake

[146]

In the above picture, the three ways a snake can die: hitting a wall, leaving the
stage, and hitting its own body. Also, look at the dramatic effect added by
game_over_mc object.

Summary
In this chapter, you built a complete Snake prototype without using any array. This
different approach to the creation of a tile-based game allowed you to use points
and get the DisplayObjects under a point. Also, you learned how to determine the
distance between two points using Manhattan distance. It will come in handy when
you have to deal with distances in a tile-based game.

Where to go now
It would be great if you would allow the game to move the snake at higher speed
when the player ate a certain amount of fruits. To do this, you can set the frame rate
to 30 and use a counter to run the content of onEnterFr function only once every
five frames (use modulo operator to do it). This way your snake will move at 30/5=6
frames per second, just like the one you just developed. When the player collects,
let's say, 10 fruits, you will make onEnterFr function run its content once every four
frames, updating more than six times per second the game field and consequently
increasing the snake's speed and game difficulty.

Tetris
Tetris is a tile-based puzzle game made in the Soviet Union. It features shapes
called tetrominoes, geometric shapes composed of four squared blocks connected
orthogonally, that fall from the top of the playing field. Once a tetromino touches
the ground, it lands and cannot be moved anymore, being part of the ground itself,
and a new tetromino falls from the top of the game field, usually a 10x20 tiles vertical
rectangle. The player can move the falling tetromino horizontally and rotate by 90
degrees to create a horizontal line of blocks. When a line is created, it disappears and
any block above the deleted line falls down. If the stacked tetrominoes reach the top
of the game field, it's game over.

As you are about to experience, the making of Tetris wouldn't introduce new
programming features but it's hard enough to provide you a good challenge.
Anyway, during this chapter you will also learn the basics of drawing with AS3.

Defining game design
This time I won't talk about the game design itself, since Tetris is a well known game
and as you read this chapter you should be used to dealing with game design.

By the way, there is something really important about this game you need to know
before you start reading this chapter. You won't draw anything in the Flash IDE.
That is, you won't manually draw tetrominoes, the game field, or any other graphic
assets. Everything will be generated on the fly using AS3 drawing methods.

Tetris is the best game for learning how to draw with AS3 as it only features blocks,
blocks, and only blocks.

Moreover, although the game won't include new programming features, its
principles make Tetris the hardest game of the entire book. Survive Tetris and you
will have the skills to create the next games focusing more on new features and
techniques rather than on programming logic.

Tetris

[148]

Importing classes and declaring first
variables
The first thing we need to do, as usual, is set up the project and define the main class
and function, as well as preparing the game field.

Create a new file (File | New) then from New Document window select
Actionscript 3.0. Set its properties as width to 400 px, height to 480 px, background
color to #333333 (a dark gray), and frame rate to 30 (quite useless anyway since
there aren't animations, but you can add an animated background on your own).
Also, define the Document Class as Main and save the file as tetris.fla.

Without closing tetris.fla, create a new file and from New Document window
select ActionScript 3.0 Class. Save this file as Main.as in the same path you saved
tetris.fla. Then write:

package {
 import flash.display.Sprite;
 import flash.utils.Timer;
 import flash.events.TimerEvent;
 import flash.events.KeyboardEvent;
 public class Main extends Sprite {
 private const TS:uint=24;
 private var fieldArray:Array;
 private var fieldSprite:Sprite;
 public function Main() {
 // tetris!!
 }
 }
}

We already know we have to interact with the keyboard to move, drop, and rotate
tetrominoes and we have to deal with timers to manage falling delay, so I already
imported all needed libraries.

Then, there are some declarations to do:

private const TS:uint=24;

TS is the size, in pixels, of the tiles representing the game field. It's a constant as it
won't change its value during the game, and its value is 24. With 20 rows of tiles,
the height of the whole game field will be 24x20 = 480 pixels, as tall as the height of
our movie.

private var fieldArray:Array;

Chapter 5

[149]

fieldArray is the array that will numerically represent the game field.

private var fieldSprite:Sprite;

fieldSprite is the DisplayObject that will graphically render the game field.

Let's use it to add some graphics.

Drawing game field background
Nobody wants to see an empty black field, so we are going to add some graphics. As
said, during the making of this game we won't use any drawn Movie Clip, so every
graphic asset will be generated by pure ActionScript.

The idea: Draw a set of squares to represent the game field.

The development: Add this line to Main function:

public function Main() {
 generateField();
}

then write generateField function this way:

private function generateField():void {
 fieldArray = new Array();
 fieldSprite=new Sprite();
 addChild(fieldSprite);
 fieldSprite.graphics.lineStyle(0,0x000000);
 for (var i:uint=0; i<20; i++) {
 fieldArray[i]=new Array();
 for (var j:uint=0; j<10; j++) {
 fieldArray[i][j]=0;
 fieldSprite.graphics.beginFill(0x444444);
 fieldSprite.graphics.drawRect(TS*j,TS*i,TS,TS);
 fieldSprite.graphics.endFill();
 }
 }
}

Tetris

[150]

Test the movie and you will see:

The 20x10 game field has been rendered on the stage in a lighter gray. I could have
used constants to define values like 20 and 10, but I am leaving it to you at the end of
the chapter.

Let's see what happened:

fieldArray = new Array();
fieldSprite=new Sprite();
addChild(fieldSprite);

These lines just construct fieldArray array and fieldSprite DisplayObject, then
add it to stage as you have already seen a million times.

fieldSprite.graphics.lineStyle(0,0x000000);

This line introduces a new world called Graphics class. This class contains a set of
methods that will allow you to draw vector shapes on Sprites.

lineStyle method sets a line style that you will use for your drawings. It accepts a
big list of arguments, but at the moment we'll focus on the first two of them.

Chapter 5

[151]

The first argument is the thickness of the line, in points. I set it to 0 because I wanted
it as thin as a hairline, but valid values are 0 to 255.

The second argument is the hexadecimal color value of the line, in this case black.

Hexadecimal uses sixteen distinct symbols to represent numbers from 0 to 15.
Numbers from zero to nine are represented with 0-9 just like the decimal numeral
system, while values from ten to fifteen are represented by letters A-F. That's the
way it is used in most common paint software and in the web to represent colors.

You can create hexadecimal numbers by preceding them with 0x.

Also notice that lineStyle method, like all Graphics class methods, isn't applied
directly on the DisplayObject itself but as a method of the graphics property.

for (var i:uint=0; i<20; i++) { ... }

The remaining lines are made by the classical couple of for loops initializing
fieldArray array in the same way you already initialized all other array-based
games, and drawing the 200 (20x10) rectangles that will form the game field.

fieldSprite.graphics.beginFill(0x444444);

beginFill method is similar to lineStyle as it sets the fill color that you will use
for your drawings. It accepts two arguments, the color of the fill (a dark gray in this
case) and the opacity (alpha). Since I did not specify the alpha, it takes the default
value of 1 (full opacity).

fieldSprite.graphics.drawRect(TS*j,TS*i,TS,TS);

With a line and a fill style, we are ready to draw some squares with drawRect
method, that draws a rectangle. The four arguments represent respectively the
x and y position relative to the registration point of the parent DisplayObject
(fieldSprite, that happens to be currently on 0,0 in this case), the width and the
height of the rectangle. All the values are to be intended in pixels.

fieldSprite.graphics.endFill();

endFill method applies a fill to everything you drew after you called
beginFill method.

This way we are drawing a square with a TS pixels side for each for iteration. At the
end of both loops, we'll have 200 squares on the stage, forming the game field.

Tetris

[152]

Drawing a better game field background
Tetris background game fields are often represented as a checkerboard, so let's try to
obtain the same result.

The idea: Once we defined two different colors, we will paint even squares with one
color, and odd squares with the other color.

The development: We have to modify the way generateField function renders
the background:

private function generateField():void {
 var colors:Array=new Array("0x444444","0x555555");");
 fieldArray = new Array();
 var fieldSprite:Sprite=new Sprite();
 addChild(fieldSprite);
 fieldSprite.graphics.lineStyle(0,0x000000);
 for (var i:uint=0; i<20; i++) {
 fieldArray[i]=new Array();
 for (var j:uint=0; j<10; j++) {
 fieldArray[i][j]=0;
 fieldSprite.graphics.beginFill(colors[(j%2+i%2)%2]);
 fieldSprite.graphics.drawRect(TS*j,TS*i,TS,TS);
 fieldSprite.graphics.endFill();
 }
 }
}

We can define an array of colors and play with modulo operator to fill the squares
with alternate colors and make the game field look like a chessboard grid.

The core of the script lies in this line:

fieldSprite.graphics.beginFill(colors[(j%2+i%2)%2]);

that plays with modulo to draw a checkerboard.

Chapter 5

[153]

Test the movie and you will see:

Now the game field looks better.

Creating the tetrominoes
The concept behind the creation of representable tetrominoes is the hardest part of
the making of this game. Unlike the previous games you made, such as Snake, that
will feature actors of the same width and height (in Snake the head is the same size
as the tail), in Tetris every tetromino has its own width and height. Moreover, every
tetromino but the square one is not symmetrical, so its size is going to change when
the player rotates it.

How can we manage a tile-based game with tiles of different width and height?

The idea: Since tetrominoes are made by four squares connected orthogonally (that
is, forming a right angle), we can split tetrominoes into a set of tiles and include them
into an array.

The easiest way is to include each tetromino into a 4x4 array, although most of them
would fit in smaller arrays, it's good to have a standard array.

Tetris

[154]

Something like this:

Every tetromino has its own name based on the alphabet letter it reminds, and its
own color, according to The Tetris Company (TTC), the company that currently
owns the trademark of the game Tetris. Just for your information, TTC sues every
Tetris clone whose name somehow is similar to "Tetris", so if you are going to create
and market a Tetris clone, you should call it something like "Crazy Bricks" rather
than "Tetriz".

Anyway, following the previous picture, from left-to-right and from top-to-bottom,
the "official" names and colors for tetrominoes are:

I—color: cyan (0x00FFFF)
T—color: purple (0xAA00FF)
L—color: orange (0xFFA500)
J—color: blue (0x0000FF)
Z—color: red (0xFF0000)
S—color: green (0x00FF00)
O—color: yellow (0xFFFF00)

The development: First, add two new class level variables:

private const TS:uint=24;
private var fieldArray:Array;
private var fieldSprite:Sprite;
private var tetrominoes:Array = new Array();
private var colors:Array=new Array();

•

•

•

•

•

•

•

Chapter 5

[155]

tetrominoes array is the four-dimensional array containing all tetrominoes
information, while colors array will store their colors.

Now add a new function call to Main function:

public function Main() {
 generateField();
 initTetrominoes();
}

initTetrominoes function will initialize tetrominoes-related arrays.

private function initTetrominoes():void {
 // I
 tetrominoes[0]=[[[0,0,0,0],[1,1,1,1],[0,0,0,0],[0,0,0,0]],
 [[0,1,0,0],[0,1,0,0],[0,1,0,0],[0,1,0,0]]];
 colors[0]=0x00FFFF;
 // T
 tetrominoes[1]=[[[0,0,0,0],[1,1,1,0],[0,1,0,0],[0,0,0,0]],
 [[0,1,0,0],[1,1,0,0],[0,1,0,0],[0,0,0,0]],
 [[0,1,0,0],[1,1,1,0],[0,0,0,0],[0,0,0,0]],
 [[0,1,0,0],[0,1,1,0],[0,1,0,0],[0,0,0,0]]];
 colors[1]=0x767676;
 // L
 tetrominoes[2]=[[[0,0,0,0],[1,1,1,0],[1,0,0,0],[0,0,0,0]],
 [[1,1,0,0],[0,1,0,0],[0,1,0,0],[0,0,0,0]],
 [[0,0,1,0],[1,1,1,0],[0,0,0,0],[0,0,0,0]],
 [[0,1,0,0],[0,1,0,0],[0,1,1,0],[0,0,0,0]]];
 colors[2]=0xFFA500;
 // J
 tetrominoes[3]=[[[1,0,0,0],[1,1,1,0],[0,0,0,0],[0,0,0,0]],
 [[0,1,1,0],[0,1,0,0],[0,1,0,0],[0,0,0,0]],
 [[0,0,0,0],[1,1,1,0],[0,0,1,0],[0,0,0,0]],
 [[0,1,0,0],[0,1,0,0],[1,1,0,0],[0,0,0,0]]];
 colors[3]=0x0000FF;
 // Z
 tetrominoes[4]=[[[0,0,0,0],[1,1,0,0],[0,1,1,0],[0,0,0,0]],
 [[0,0,1,0],[0,1,1,0],[0,1,0,0],[0,0,0,0]]];
 colors[4]=0xFF0000;
 // S
 tetrominoes[5]=[[[0,0,0,0],[0,1,1,0],[1,1,0,0],[0,0,0,0]],
 [[0,1,0,0],[0,1,1,0],[0,0,1,0],[0,0,0,0]]];
 colors[5]=0x00FF00;
 // O
 tetrominoes[6]=[[[0,1,1,0],[0,1,1,0],[0,0,0,0],[0,0,0,0]]];
 colors[6]=0xFFFF00;
}

Tetris

[156]

colors array is easy to understand: it's just an array with the hexadecimal value of
each tetromino color.

tetrominoes is a four-dimensional array. It's the first time you see such a complex
array, but don't worry. It's no more difficult than the two-dimensional arrays you've
been dealing with since the creation of Minesweeper. Tetrominoes are coded into the
array this way:

tetrominoes[n] contains the arrays with all the information about the n-th
tetromino. These arrays represent the various rotations, the four rows and
the four columns.
tetrominoes[n][m] contains the arrays with all the information about the
n-th tetromino in the m-th rotation. These arrays represent the four rows
and the four columns.
tetrominoes[n][m][o] contains the array with the four elements of the n-
th tetromino in the m-th rotation in the o-th row.
tetrominoes[n][m][o][p] is the p-th element of the array representing the
o-th row in the m-th rotation of the n-th tetromino. Such element can be 0 if
it's an empty space or 1 if it's part of the tetromino.

There isn't much more to explain as it's just a series of data entry. Let's add our first
tetromino to the field.

Placing your first tetromino
Tetrominoes always fall from the top-center of the level field, so this will be its
starting position.

The idea: We need a DisplayObject to render the tetromino itself, and some variables
to store which tetromino we have on stage, as well as its rotation and horizontal and
vertical position.

The development: Add some new class level variables:

private const TS:uint=24;
private var fieldArray:Array;
private var fieldSprite:Sprite;
private var tetrominoes:Array = new Array();
private var colors:Array=new Array();
private var tetromino:Sprite;
private var currentTetromino:uint;
private var currentRotation:uint;
private var tRow:uint;
private var tCol:uint;

•

•

•

•

Chapter 5

[157]

tetromino is the DisplayObject representing the tetromino itself.

currentTetromino is the number of the tetromino currently in game, and will range
from 0 to 6.

currentRotation is the rotation of the tetromino and will range from 0 to 3 since a
tetromino can have four distinct rotations, but for some tetrominoes such as "I", "S"
and "Z" will range from 0 to 1 and it can be only 0 for the "O" one. It depends on how
may distinct rotations a tetromino can have.

tRow and tCol will represent the current vertical and horizontal position of the
tetromino in the game field.

Since the game starts with a tetromino in the game, let's add a new function call to
Main function:

public function Main() {
 generateField();
 initTetrominoes();
 generateTetromino();
}

generateTetromino function will generate a random tetromino to be placed on the
game field:

private function generateTetromino():void {
 currentTetromino=Math.floor(Math.random()*7);
 currentRotation=0;
 tRow=0;
 tCol=3;
 drawTetromino();
}

The function is very easy to understand: it generates a random integer number
between 0 and 6 (the possible tetrominoes) and assigns it to currentTetromino.
There is no need to generate a random starting rotation as in all Tetris versions
I played, tetrominoes always start in the same position, so I assigned 0 to
currentRotation, but feel free to add a random rotation if you want.

tRow (the starting row) is set to 0 to place the tetromino at the very top of the game
field, and tCol is always 3 because tetrominoes are included in a 4 elements wide
array, so to center it in a 10 column wide field, its origin must be at (10-4)/2 = 3.

Tetris

[158]

Once the tetromino has been generated, drawTetromino function renders it on
the screen.

private function drawTetromino():void {
 var ct:uint=currentTetromino;
 tetromino=new Sprite();
 addChild(tetromino);
 tetromino.graphics.lineStyle(0,0x000000);
 for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][currentRotation][i].length;
j++) {
 if (tetrominoes[ct][currentRotation][i][j]==1) {
 tetromino.graphics.beginFill(colors[ct]);
 tetromino.graphics.drawRect(TS*j,TS*i,TS,TS);
 tetromino.graphics.endFill();
 }
 }
 }
 placeTetromino();
}

Actually the first line has no sense, I only needed a variable with a name shorter
than currentTetromino or the script wouldn't have fitted on the page. That's why I
created ct variable.

The rest of the script is quite easy to understand: first tetromino DisplayObject is
constructed and added to Display List, then lineStyle method is called to prepare
us to draw the tetromino.

This is the main loop:

for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][currentRotation][i].length; j++)
{
 ...
 }
}

These two for loops scan through tetrominoes array elements relative to the
current tetromino in the current rotation.

if (tetrominoes[ct][currentRotation][i][j]==1) { ... }

This is how we apply the concept explained during the creation of
tetrominoes array.

Chapter 5

[159]

We are looking for the j-th element in the i-th row of the currentRotation-ct
rotation of the ct-th tetromino. If it's equal to 1, we must draw a tetromino tile.

These lines:

tetromino.graphics.beginFill(colors[ct]);
tetromino.graphics.drawRect(TS*j,TS*i,TS,TS);
tetromino.graphics.endFill();

just draw a square in the same way we used to do with the field background. The
combination of all squares we drew will form the tetromino.

Finally, the tetromino is placed calling placeTetromino function that works
this way:

private function placeTetromino():void {
 tetromino.x=tCol*TS;
 tetromino.y=tRow*TS;
}

It just places the tetromino in the correct place according to tCol and tRow values.
You already know these values are respectively 3 and 0 at the beginning, but this
function will be useful every time you need to update a tetromino's position.

Test the movie and you will see your first tetromino placed on the game field. Test it
a few more times, to display all of your tetrominoes, and you should find a glitch.

While "O" tetromino is correctly placed on the top of the game field, "T" tetromino
has shifted one row down.

This happens because some tetrominoes in some rotations have the first row empty.
Since all tetrominoes are embedded in a 4x4 array, when the first row is empty it
looks like the tetromino is starting from the second row of the game field rather than
the first one.

We should scan for the first row of a newborn tetromino and set tRow to -1 rather
than 0 if its first row is empty, to make it fall from the first game field row.

Tetris

[160]

tRow cannot be an unsigned integer anymore as it can take a -1 value, so change the
level class variables declarations:

private const TS:uint=24;
private var fieldArray:Array;
private var fieldSprite:Sprite;
private var tetrominoes:Array = new Array();
private var colors:Array=new Array();
private var tetromino:Sprite;
private var currentTetromino:uint;
private var currentRotation:uint;
private var tRow:int;
private var tCol:uint;

Then in generateTetromino function we must look for a 1 in the first row of the first
rotation to make sure the current tetromino has a piece in the first row. If not, we
have to set tRow to -1. Change generateTetromino function this way:

private function generateTetromino():void {
 currentTetromino=Math.floor(Math.random()*7);
 currentRotation=0;
 tRow=0;
 if (tetrominoes[currentTetromino][0][0].indexOf(1)==-1) {
 tRow=-1;
 }
 tCol=3;
 drawTetromino();
}

Then test the movie and finally every tetromino will start at the very top of the
game field.

Tetrominoes won't float forever so it's time to add some interaction to the game.

Chapter 5

[161]

Moving tetrominoes horizontally
Players should be able to move tetrominoes horizontally with arrow keys (and
any other keys you want to enable, but in this chapter we'll only cover arrow keys
movement).

The idea: Pressing LEFT arrow key will make the current tetromino move to the
left by one tile (if allowed) and pressing RIGHT arrow key will make the current
tetromino move to the right by one tile (if allowed).

The development: The first thing which comes to mind is some tetrominoes in some
rotations can have the leftmost column empty, just as it happened with the first row.
For this reason, it's better to declare tCol variable as an integer since it can assume
negative values when you next move the tetromino to the left edge of the game field.

private const TS:uint=24;
private var fieldArray:Array;
private var fieldSprite:Sprite;
private var tetrominoes:Array = new Array();
private var colors:Array=new Array();
private var tetromino:Sprite;
private var currentTetromino:uint;
private var currentRotation:uint;
private var tRow:int;
private var tCol:int;

Now you can add the keyboard listener to make the player move the pieces. It will
be added on Main function:

public function Main() {
 generateField();
 initTetrominoes();
 generateTetromino();
 stage.addEventListener(KeyboardEvent.KEY_DOWN,onKDown);
}

onKDown function will handle the keys pressed in the same old way you already
know. The core of this process is the call to another function called canFit that will
tell us if a tetromino can fit in its new position.

private function onKDown(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case 37 :
 if (canFit(tRow,tCol-1)) {
 tCol--;

Tetris

[162]

 placeTetromino();
 }
 break;
 case 39 :
 if (canFit(tRow,tCol+1)) {
 tCol++;
 placeTetromino();
 }
 break;
 }
}

If we look at what happens when the player presses LEFT arrow key (case 37) we
see tCol value is decreased by 1 and the tetromino is placed in its new position using
placeTetromino function only if the value returned by canFit function is true.

Also, notice its arguments: the current row (tRow) and the current column decreased
by 1 (tCol-1). It should be clear canFit function checks whether the tetromino can
fit in a given position or not.

So when the player presses LEFT or RIGHT keys, we check if the tetromino would
fit in the new given position, and if it fits we update its tCol value and draw it in the
new position.

Now we are ready to write canFit function, that wants two integer arguments for
the candidate row and column, and returns true if the current tetromino fits in these
coordinates, or false if it does not fit.

private function canFit(row:int,col:int):Boolean {
 var ct:uint=currentTetromino;
 for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][currentRotation][i].length;
j++) {
 if (tetrominoes[ct][currentRotation][i][j]==1) {
 // out of left boundary
 if (col+j<0) {
 return false;
 }
 // out of right boundary
 if (col+j>9) {
 return false;
 }
 }
 }
 }
 return true;
}

As seen, ct variable exists for a layout purpose.

Chapter 5

[163]

In this function we have the classical couple of for loops and the if statement to
check for current tetromino's pieces:

for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][currentRotation][i].length; j++)
{
 if (tetrominoes[ct][currentRotation][i][j]==1) {
 ...
 }
 }
}

and then the core of the function: checking for the tetromino to be completely inside
the game field:

if (col+j<0) {
 return false;
}

and

if (col+j>9) {
 return false;
}

Once we found a tetromino piece at tetrominoes[ct][currentRotation][i][j],
we know j is the column value inside the tetromino and col is the candidate column
for the tetromino.

If the sum of col and j is a number outside the boundaries of game field, then at
least a piece of the tetromino is outside the game field, and the position is not legal
(return false) and nothing is done.

If all current tetromino's pieces are inside the game field, then the position is legal
(return true) and the position of the tetromino is updated.

Look at this picture:

Tetris

[164]

The "Z" tetromino is in an illegal position; let's see how we can spot it. The red frame
indicates the tetromino's area, with black digits showing tetromino's array indexes.

The green digit represents the origin column value of the tetromino in the game field,
while the blue one represents the origin row value.

When we check the tetromino piece at 1,0, we have to sum its column value (0) to
the origin column value (-1). Since the result is less than zero, we can say the piece
is in an illegal spot, so the entire tetromino can't be placed here.

All remaining tetromino's pieces are in legal places, because when you sum
tetromino's pieces column values (1 or 2) with origin column value (-1), the
result will always be greater than zero.

This concept will be applied to all game field sides.

Test the movie and you will be able to move tetrominoes horizontally.

Now, let's move on to vertical movement.

Moving tetrominoes down
Moving tetrominoes down obviously applies the same concept to vertical direction.

The idea: Once the DOWN arrow key has been pressed, we should call canFit
function passing as arguments the candidate row value (tRow+1 as the tetromino
is moving one row down) and the current column value.

The development: modify onKDown function adding the new case:

private function onKDown(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case 37 :
 ...
 break;
 case 39 :
 ...

Chapter 5

[165]

 break;
 case 40 :
 if (canFit(tRow+1,tCol)) {
 tRow++;
 placeTetromino();
 }
 break;
 }
}

We also need to update canFit function to check if the tetromino would go out of
the bottom boundary.

Add this new if statement to canFit function:

private function canFit(row:int,col:int):Boolean {
 var ct:uint=currentTetromino;
 for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][currentRotation][i].length;
j++) {
 if (tetrominoes[ct][currentRotation][i][j]==1) {
 // out of left boundary
 if (col+j<0) {
 return false;
 }
 // out of right boundary
 if (col+j>9) {
 return false;
 }
 // out of bottom boundary
 if (row+i>19) {
 return false;
 }
 }
 }
 }
 return true;
}

As you can see it's exactly the same concept applied to horizontal movement.

Tetris

[166]

Test the movie and you will be able to move tetrominoes down.

Everything is fine and easy at the moment, but you know once a tetromino touches
the ground, it must stay in its position and a new tetromino should fall from the top
of the field.

Managing tetrominoes landing
The first thing to determine is: when should a tetromino be considered as landed?
When it should move down but it can't. That's it. Easier than you supposed, I guess.

The idea: When it's time to move the tetromino down a row (case 40 in onKDown
function), when you can't move it down (canFit function returns false), it's time
to make it land and generate a new tetromino.

The development: Modify onKDown function this way:

private function onKDown(e:KeyboardEvent) {
 switch (e.keyCode) {
 case 37 :
 ...
 break;

Chapter 5

[167]

 case 39 :
 ...
 break;
 case 40 :
 if (canFit(tRow+1,tCol)) {
 tRow++;
 placeTetromino();
 } else {
 landTetromino();
 generateTetromino();
 }
 break;
 }
}

When you can't move down a tetromino, landTetromino function is called to
manage its landing and a new tetromino is generated with generateTetromino
function.

This is landTetromino function:

private function landTetromino():void {
 var ct:uint=currentTetromino;
 var landed:Sprite;
 for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][currentRotation][i].length;
j++) {
 if (tetrominoes[ct][currentRotation][i][j]==1) {
 landed = new Sprite();
 addChild(landed);
 landed.graphics.lineStyle(0,0x000000);
 landed.graphics.beginFill(colors[currentTetromino]);
 landed.graphics.drawRect(TS*(tCol+j),TS*(tRow+i),TS,TS);
 landed.graphics.endFill();
 fieldArray[tRow+i][tCol+j]=1;
 }
 }
 }
 removeChild(tetromino);
}

It works creating four new DisplayObjects, one for each tetromino's piece, and
adding them to the Display List. At the same time, fieldArray array is updated.

Tetris

[168]

Let's see this process in detail:

var ct:uint=currentTetromino;

This is the variable I created for layout purpose.

var landed:Sprite;

landed is the DisplayObject we'll use to render each tetromino piece.

for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][currentRotation][i].length; j++)
{
 if (tetrominoes[ct][currentRotation][i][j]==1) {
 ...
 }
 }
}

This is the loop to scan for pieces into the tetromino. Once it finds a piece, here comes
the core of the function:

landed = new Sprite();
addChild(landed);

landed DisplayObject is added to Display List.

landed.graphics.lineStyle(0,0x000000);
landed.graphics.beginFill(colors[currentTetromino]);
landed.graphics.drawRect(TS*(tCol+j),TS*(tRow+i),TS,TS);
landed.graphics.endFill();

Draws a square where the tetromino piece should lie. It's very similar to what you've
seen in drawTetromino function.

fieldArray[tRow+i][tCol+j]=1;

Updating fieldArray array setting the proper element to 1 (occupied).

removeChild(tetromino);

At the end of the function, the old tetromino is removed. A new one is about to come
from the upper side of the game.

Test the movie and move down a tetromino until it reaches, then try to move it down
again to see it land on the ground and a new tetromino appear from the top.

Everything will work fine until you try to make a tetromino fall over another
tetromino.

Chapter 5

[169]

This happens because we haven't already managed the collision between the active
tetromino and the landed ones.

Managing tetrominoes collisions
Do you remember once a tetromino touches the ground we updated fieldArray
array? Now the array contains the mapping of all game field cells occupied by a
tetromino piece.

The idea: To check for a collision between tetrominoes we just need to add another
if statement to canFit function to see if in the candidate position of the current
tetromino there is a cell of the game field already occupied by a previously landed
tetromino, that is the fieldArray array element is equal to 1.

The development: It's just necessary to add these three lines to canFit function:

private function canFit(row:int,col:int):Boolean {
 var ct:uint=currentTetromino;
 for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][currentRotation][i].length;
j++) {
 if (tetrominoes[ct][currentRotation][i][j]==1) {
 // out of left boundary
 if (col+j<0) {
 return false;
 }
 // out of right boundary
 if (col+j>9) {
 return false;
 }
 // out of bottom boundary
 if (row+i>19) {
 return false;
 }

Tetris

[170]

 // over another tetromino
 if (fieldArray[row+i][col+j]==1) {
 return false;
 }
 }
 }
 }
 return true;
}

Test the movie and see how tetrominoes stack correctly.

By the way, making lines is not easy if you can't rotate tetrominoes.

Rotating tetrominoes
The concept behind a tetromino rotation is not that different than the one behind its
movement.

The idea: We have to see if the tetromino in the candidate rotation fits in the game
field, and eventually apply the rotation.

The development: The first thing to do is to change canFit function to let it accept a
third argument, the candidate rotation. Change it this way:

private function canFit(row:int,col:int,side:uint):Boolean {
 var ct:uint=currentTetromino;
 for (var i:int=0; i<tetrominoes[ct][side].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][side][i].length; j++) {
 if (tetrominoes[ct][side][i][j]==1) {
 ...
 }

Chapter 5

[171]

 }
 }
 return true;
}

As you can see there's nothing difficult in it: I just added a third argument called
side that will contain the candidate rotation of the tetromino.

Then obviously any call to class level variable currentRotation has to be replaced
with side argument.

Every existing call to canFit function in onKDown function must be updated passing
the new argument, usually currentRotation, except when the player tries to rotate
the tetromino (case 38):

private function onKDown(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case 37 :
 if (canFit(tRow,tCol-1,currentRotation)) {
 ...
 }
 break;
 case 38 :
 var ct:uint=currentRotation;
 var rot:uint=(ct+1)%tetrominoes[currentTetromino].length;
 if (canFit(tRow,tCol,rot)) {
 currentRotation=rot;
 removeChild(tetromino);
 drawTetromino();
 placeTetromino();
 }
 break;
 case 39 :
 if (canFit(tRow,tCol+1,currentRotation)) {
 ...
 }
 break;
 case 40 :
 if (canFit(tRow+1,tCol,currentRotation)) {
 ...
 }
 break;
 }
}

Tetris

[172]

Now let's see what happens when the player presses UP arrow key:

var ct:uint=currentRotation;

ct variable is used only for a layout purpose, to have currentRotation value in a
variable with a shorter name.

var rot:uint=(ct+1)%tetrominoes[currentTetromino].length;

rot variable will take the value of the candidate rotation. It's determined by adding
1 to current rotation and applying a modulo with the number of possible rotations
of the current tetromino, that's determined by tetrominoes[currentTetromino].
length.

if (canFit(tRow,tCol,rot)) { ... }

Calls canFit function passing the current row, the current column, and the
candidate rotation as parameters. If canFit returns true, then these lines are
executed:

currentRotation=rot;

currentRotation variable takes the value of the candidate rotation.

removeChild(tetromino);

The current tetromino is removed.

drawTetromino();
placeTetromino();

A new tetromino is created and placed on stage. You may wonder why I delete and
redraw the tetromino rather than simply rotating the DisplayObject representing the
current tetromino. That's because tetrominoes' rotations aren't symmetrical to their
centers, as you can see looking at their array values.

Test the movie and press UP arrow key to rotate the current tetromino.

Chapter 5

[173]

You will notice you can't rotate some tetrominoes when they are close to the first
or last row or column. In some Tetris versions, when you try to rotate a tetromino
next to game field edges, it's automatically shifted horizontally by one position (if
possible) to let it rotate anyway.

In this prototype, I did not add this feature because there's nothing interesting from
a programming point of view so I preferred to focus more in detail on other features
rather than writing just a couple of lines about everything.

Anyway, if you want to try it by yourself, here's how it should work:

When a tetromino can't be rotated as one of its piece would go out of the game field,
along with the rotation the tetromino is shifted in a safe area, if possible.

Finally, you can make lines! Let's see how to manage them.

Removing completed lines
According to game mechanics, a line can be completed only after a tetromino
is landed.

The idea: Once the falling tetromino lands on the ground or over another tetromino,
we'll check if there is any completed line. A line is completed when it's entirely filled
by tetrominoes pieces.

The development: At the end of landTetromino function you should check for
completed lines and eventually remove them. Change landTetromino this way:

private function landTetromino():void {
 var ct:uint=currentTetromino;
 var landed:Sprite;
 for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 for (var j:int=0; j<tetrominoes[ct][currentRotation][i].length;
j++) {
 if (tetrominoes[ct][currentRotation][i][j]==1) {
 landed = new Sprite();

Tetris

[174]

 addChild(landed);
 landed.graphics.lineStyle(0,0x000000);
 landed.graphics.beginFill(colors[currentTetromino]);
 landed.graphics.drawRect(TS*(tCol+j),TS*(tRow+i),TS,TS);
 landed.graphics.endFill();
 landed.name="r"+(tRow+i)+"c"+(tCol+j);
 fieldArray[tRow+i][tCol+j]=1;
 }
 }
 }
 removeChild(tetromino);
 checkForLines();
}

As said, the last line calls checkForLines function that will check for completed
lines. But before doing it, take a look at how I am giving a name to each piece of
any landed tetromino. The name is meant to be easily recognizable by its row and
column, so for instance the piece at the fifth column of the third row would be r3c5.
Naming pieces this way will help us when it's time to remove them. We will be
able to find them easily with the getChildByName method you should have
already mastered.

Add checkForLines function:

private function checkForLines():void {
 for (var i:int=0; i<20; i++) {
 if (fieldArray[i].indexOf(0)==-1) {
 for (var j:int=0; j<10; j++) {
 fieldArray[i][j]=0;
 removeChild(getChildByName("r"+i+"c"+j));
 }
 }
 }
}

Test the movie and you will be able to remove complete lines.

Chapter 5

[175]

Let's see how checkForLines function works:

for (var i:int=0; i<20; i++) { ... }

for loop iterating through all 20 lines in the game field

if (fieldArray[i].indexOf(0)==-1) { ... }

Since a line must be completely filled with tetrominoes pieces to be considered as
completed, the array must be filled by 1, that is, there can't be any 0. That's what this
if statement is checking on the i-th line.

for (var j:int=0; j<10; j++) { ... }

If a line is completed, then we iterate through all its ten columns to remove it.

fieldArray[i][j]=0;

This clears the game field bringing back fieldArray[i][j] element at 0.

removeChild(getChildByName("r"+i+"c"+j));

And this removes the corresponding DisplayObject, easily located by its name.

Now, we have to manage "floating" lines.

Managing remaining lines
When a line is removed, probably there are some tetrominoes above it, just like in
the previous picture. Obviously you can't leave the game field as is, but you have to
make the above pieces fall down to fill the removed lines.

The idea: Check all pieces above the removed line and move them down to fill the
gap left by the removed line.

The development: We can do it by simply moving down one tile, all tetrominoes
pieces above the line we just deleted, and updating fieldArray array consequently.

Change checkForLines function this way:

private function checkForLines():void {
 for (var i:int=0; i<20; i++) {
 if (fieldArray[i].indexOf(0)==-1) {
 for (var j:int=0; j<10; j++) {
 fieldArray[i][j]=0;
 removeChild(getChildByName("r"+i+"c"+j));
 }
 for (j=i; j>=0; j--) {

Tetris

[176]

 for (var k:int=0; k<10; k++) {
 if (fieldArray[j][k]==1) {
 fieldArray[j][k]=0;
 fieldArray[j+1][k]=1;
 getChildByName("r"+j+"c"+k).y+=TS;
 getChildByName("r"+j+"c"+k).name="r"+(j+1)+"c"+k;
 }
 }
 }
 }
 }
}

Let's see what we are going to do:

for (j=i; j>=0; j--) { ... }

This is the most important loop. It ranges from i (the row we just cleared) back
to zero. In other words, we are scanning all rows above the row we just cleared,
including it.

for (var k:int=0; k<10; k++) { ... }

This for loop iterates trough all 10 elements in the j-th row.

if (fieldArray[j][k]==1) { ... }

Checks if there is a tetromino piece in the k-th column of the j-th row.

fieldArray[j][k]=0;

Sets the k-th column of the j-th row to 0.

fieldArray[j+1][k]=1;

Sets the k-th column of the (j+1)-th row to 1. This way we are shifting down an
entire line.

getChildByName("r"+j+"c"+k).y+=TS;

Moves down the corresponding DisplayObject by TS pixels.

getChildByName("r"+j+"c"+k).name="r"+(j+1)+"c"+k;

Changes the corresponding DisplayObject name according to its new position.

Test the game and try to remove one or more lines. Everything will work properly.

Chapter 5

[177]

Now, to make the player's life harder, we can make tetrominoes fall down
by themselves.

Making tetrominoes fall
One major feature still lacking in this prototype is the gravity that makes tetrominoes
fall down at a given interval of time. With the main engine already developed and
working, it's just a matter of adding a timer listener and doing the same thing as the
player presses DOWN arrow key.

The idea: After a given amount of time, make the tetromino controlled by the player
move down by one line.

The development: First, add a new class level variable.

private const TS:uint=24;
private var fieldArray:Array;
private var fieldSprite:Sprite;
private var tetrominoes:Array = new Array();
private var colors:Array=new Array();
private var tetromino:Sprite;
private var currentTetromino:uint;
private var currentRotation:uint;
private var tRow:int;
private var tCol:int;
private var timeCount:Timer=new Timer(500);

timeCount is the variable that will trigger the event listener every 500 milliseconds.

The timer listener will be added once a new tetromino is generated.

Tetris

[178]

Modify generateTetromino function this way:

private function generateTetromino():void {
 ...
 timeCount.addEventListener(TimerEvent.TIMER, onTime);
 timeCount.start();
}

You already know how this listener works so this was easy, and writing onTime
function will be even easier as it's just a copy/paste of the code to execute when
the player presses DOWN arrow key (case 40).

private function onTime(e:TimerEvent):void {
 if (canFit(tRow+1,tCol,currentRotation)) {
 tRow++;
 placeTetromino();
 } else {
 landTetromino();
 generateTetromino();
 }
}

The listener also needs to be removed once the tetromino lands, to let the script
create a brand new one when a new tetromino is placed on the game field.

Remove it in landTetromino function this way:

private function landTetromino():void {
 var ct:uint=currentTetromino;
 var landed:Sprite;
 for (var i:int=0; i<tetrominoes[ct][currentRotation].length; i++) {
 ...
 }
 removeChild(tetromino);
 timeCount.removeEventListener(TimerEvent.TIMER, onTime);
 timeCount.stop();
 checkForLines();
}

Test the movie, and tetrominoes will fall down one row every 500 milliseconds.

Now you have to think quickly, or you'll stack tetrominoes until you reach the top of
the game field.

Chapter 5

[179]

Checking for game over
Finally it's time to tell the player the game is over.

The idea: If the tetromino that just appeared on the top of the game field collides
with tetrominoes pieces, the game is over.

The development: First we need a new class level variable:

private const TS:uint=24;
private var fieldArray:Array;
private var fieldSprite:Sprite;
private var tetrominoes:Array = new Array();
private var colors:Array=new Array();
private var tetromino:Sprite;
private var currentTetromino:uint;
private var currentRotation:uint;
private var tRow:int;
private var tCol:int;
private var timeCount:Timer=new Timer(500);
private var gameOver:Boolean=false;

gameOver variable will tell us if the game is over (true) or not (false). At the
beginning obviously, the game is not over.

What should happen when the game is over? First, the player shouldn't be able to
move the current tetromino, so change onKDown function this way:

private function onKDown(e:KeyboardEvent):void {
 if (! gameOver) {
 ...
 }
}

Then, no more tetrominoes should be generated. Change generateTetromino
function this way:

private function generateTetromino():void {
 if (! gameOver) {
 currentTetromino=Math.floor(Math.random()*7);
 currentRotation=0;
 tRow=0;
 if (tetrominoes[currentTetromino][0][0].indexOf(1)==-1) {
 tRow=-1;
 }
 tCol=3;
 drawTetromino();

Tetris

[180]

 if (canFit(tRow,tCol,currentRotation)) {
 timeCount.addEventListener(TimerEvent.TIMER, onTime);
 timeCount.start();
 } else {
 gameOver=true;
 }
 }
}

The first if statement:

if (! gameOver) { ... }

executes the whole function only if gameOver variable is false.

Then the event listener is added only if canFit function applied to the tetromino in
its starting position returns true. If not, this means the tetromino cannot fit even in
its starting position, so the game is over, and gameOver variable is set to true.

Test the movie and try to stack tetrominoes until you reach the top of the game field,
and the game will stop.

In the previous picture, when the "T" tetromino is added, it's game over.

Last but not least, we must show which tetromino will appear when the player lands
the current one.

Showing NEXT tetromino
To add strategy to the game, we need to show the next tetromino that will fall after
the current one has landed.

Chapter 5

[181]

The idea: Don't random generate the current tetromino, but the next one. When the
current tetromino lands, you already know which tetromino will fall from the top
because the next tetromino becomes the current one, and you will generate a new
random next tetromino.

The development: We need a new class level variable where the value of the next
falling tetromino is stored.

private const TS:uint=24;
private var fieldArray:Array;
private var fieldSprite:Sprite;
private var tetrominoes:Array = new Array();
private var colors:Array=new Array();
private var tetromino:Sprite;
private var currentTetromino:uint;
private var nextTetromino:uint;
private var currentRotation:uint;
private var tRow:int;
private var tCol:int;
private var timeCount:Timer=new Timer(500);
private var gameOver:Boolean=false;

At this point, the logic is to generate the random value of the next tetromino first,
even before generating the current one. Moreover, forget completely the current
tetromino generation. Change Main function to generate the next tetromino this way:

public function Main() {
 generateField();
 initTetrominoes();
 nextTetromino=Math.floor(Math.random()*7);
 generateTetromino();
 stage.addEventListener(KeyboardEvent.KEY_DOWN,onKDown);
}

And the trick is done. Now when it's time to generate the current tetromino, assign it
the value of the next one and generate the next random tetromino this way:

private function generateTetromino():void {
 if (! gameOver) {
 currentTetromino = nextTetromino;
 nextTetromino=Math.floor(Math.random()*7);
 drawNext();
 ...
 }
}

Tetris

[182]

As you can see, you are only randomly generating the next tetromino, while the
current one only takes its value.

drawNext function just draws the next tetromino in the same way drawTetromino
does, just in another place.

private function drawNext():void {
 if (getChildByName("next")!=null) {
 removeChild(getChildByName("next"));
 }
 var next_t:Sprite=new Sprite();
 next_t.x=300;
 next_t.name="next";
 addChild(next_t);
 next_t.graphics.lineStyle(0,0x000000);
 for (var i:int=0; i<tetrominoes[nextTetromino][0].length; i++) {
 for (var j:int=0; j<tetrominoes[nextTetromino][0][i].length; j++)
{
 if (tetrominoes[nextTetromino][0][i][j]==1) {
 next_t.graphics.beginFill(colors[nextTetromino]);
 next_t.graphics.drawRect(TS*j,TS*i,TS,TS);
 next_t.graphics.endFill();
 }
 }
 }
}

Test the movie, and here it is, your next tetromino.

Now you can play the fully functional Tetris prototype.

Chapter 5

[183]

Summary
You went through the creation of a complete Tetris game, and this alone would be
enough. Moreover, you also managed to draw basic shapes with AS3.

Where to go now
To improve your skills, you could clean the code a bit, using constants where
required. This is not mandatory, but using FIELD_WIDTH and FIELD_HEIGHT rather
than 10 and 20 here and there could improve code readability. It would also be nice
if you decrease the timer that controls tetrominoes' falling speed every, let's say, ten
completed lines.

You can create two new class level variables called completedLines (starting at zero
and increasing every time the player completes a line) and fallingTimer (to be set
at 500 and used rather than new Timer(500)). Then every time completedLines is
a multiple of ten (use modulo), stop the timer using stop method just like you made
it start with start method, remove the listener, decrease fallingTimer by, let's say,
25, and create and start a new timer with a new listener.

Astro-PANIC!
No doubt Astro-PANIC! is the least known game covered in this book. It was
released as an all machine language Commodore 64 game to be typed in the
February 1984 issue of COMPUTE!'s Gazette magazine. At that time there wasn't any
blog with source codes to download or copy/paste into your projects, so the only
way to learn from other programmers was buying computer magazines and typing
the example codes on your computer.

The objective is to destroy all enemy spaceships whose number and speed increases
as the player progresses through levels. Since I suppose you never played this game,
I would recommend you play it a bit on http://www.freewebarcade.com/game/
astro-panic/. It's a simple and addictive game that will allow me to explain
some important new concepts such as:

Trigonometry
Storing data in Vectors
Filters to dynamically add effects to your DisplayObjects
Saving data on your local computer using SharedObjects

And above all, being an almost unknown game, we'll make a complete game design.

Defining game design
Here are the rules to design our Astro-PANIC! prototype:

The player controls a spaceship with the mouse, being able to move it
horizontally on the bottom of the screen.
At each level, a given number of enemy spaceships appear and roam around
the stage at a constant speed in a constant direction.

•

•

•

•

•

•

Astro-PANIC!

[186]

Enemies cannot leave the stage, and they will bounce inside it as they touch
stage edges.
Enemies don't shoot, and the only way they will kill the player is by touching
the spaceship.
The player can only have one bullet on stage at any time, and hitting an
enemy with the bullet will destroy it.
Destroying all enemies means passing the level, and at each level the number
of enemies and their speed increases.

These are the basic rules. We'll add some minor improvements during the design
of the game itself, but before we start drawing the graphics, keep in mind we'll
design something with the look and feel of old coin operator monitors, with bright
glowing graphics.

Creating the game and drawing the
graphics
Create a new file (File | New) then from New Document window select
Actionscript 3.0. Set its properties as width to 640 px, height to 480 px, background
color to #000000 (black) and frame rate to 60. Also define the Document Class as
Main and save the file as astro-panic.fla.

During the making of Concentration I told you 30 frames per second is the ideal
choice for smooth animations, anyway we are going to use 60 frames per second this
time to create a very fast paced game.

There are three actors in this game: the player-controlled spaceship, the bullet and
the enemy. In astro-panic.fla, create three new Movie Clip symbols and call them
spaceship_mc for the spaceship, bullet_mc for the bullet, and enemy_mc for the
enemy. Set them all as exportable for ActionScript. Leave all other settings at their
default values, just like you did in previous chapters.

From left to right: The spaceship (spaceship_mc), the bullet (bullet_mc), and the
enemy (enemy_mc).

•

•

•

•

Chapter 6

[187]

I made all assets with the shape of a circle. The spaceship is half a circle with a radius
of 30 pixels, the bullet is a circle with a 4 pixels radius, and the enemy is a circle with
a radius of 25 pixels. All of them have the registration point in their centers, and
enemy_mc has a dynamic text field in it called level. You've already met dynamic
text fields during the making of Minesweeper so it won't be a problem to add it. At
the moment I am writing a couple of zeros to test how the dynamic text field fits in
the enemy shape.

Now we are ready to code.

Adding and controlling the spaceship
As usual we know we are going to use classes to manage both enter frame and
mouse click events, so we'll import all the required classes immediately.

The spaceship is controlled with the mouse, but can only move along x-axis.

Without closing astro_panic.fla, create a new file and from New Document
window select ActionScript 3.0 Class. Save this file as Main.as in the same path
you saved astro_panic.fla. Then write:

package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;
 public class Main extends Sprite {
 private var spaceship:spaceship_mc;
 public function Main() {
 placeSpaceship();
 addEventListener(Event.ENTER_FRAME,onEnterFrm);
 }
 private function placeSpaceship():void {
 spaceship=new spaceship_mc();
 addChild(spaceship);
 spaceship.y=479;
 }
 private function onEnterFrm(e:Event):void {
 spaceship.x=mouseX;
 if (spaceship.x<30) {
 spaceship.x=30;
 }
 if (spaceship.x>610) {
 spaceship.x=610;
 }
 }
 }
}

Astro-PANIC!

[188]

At this time you should know everything about the concept behind this script.
placeSpaceship is the function which constructs, adds to Display List and places
the spaceship_mc DisplayObject called spaceship.

In enter_frame function we just move the spaceship in the same position of the
x-axis of the mouse. We don't want the spaceship to hide in a corner, so it won't
be able to follow the axis of the mouse if it gets too close to stage edges.

Test the movie, and move the mouse. Your spaceship will follow it, while being
bound to the ground.

Now we should give the spaceship an old arcade look.

Adding a glow filter
AS3 allows us to dynamically apply a wide range of filters to DisplayObjects on the
fly. We'll add a glow filter to simulate old 'arcades' pixel luminosity.

flash.filters.GlowFilter class lets us apply a glow effect to DisplayObjects.

First, we need to import it.

import flash.display.Sprite;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.filters.GlowFilter;

at this time, we can simply create a new variable to construct a GlowFilter object.
Change placeSpaceship this way:

private function placeSpaceship():void {
 ...
 var glow:GlowFilter=new GlowFilter(0x00FFFF,1,6,6,2,2);
 spaceship.filters=new Array(glow);
}

In the constructor I specified the color (0x00FFFF = the same cyan I used to draw the
spaceship), the alpha (1 = full opacity), and the amount of horizontal and vertical
blur (both 6).

Chapter 6

[189]

I want you to notice that I used 6 for horizontal and vertical blur because I like the
effect I achieve with such value. If you are planning to use a lot of filters, remember
values that are a power of 2 (such as 4 and 8, but not 6) render more quickly than
other values.

The remaining two arguments are the strength, that determines the spread of the
filter (if you use Photoshop, it's something like spread and size of the glow filter you
can apply on layers) and the quality.

Quality can range from 1 to 15 but values higher than 3 may affect performances and
the same final effect can be set playing with blur.

Finally the filter is added

spaceship.filters=new Array(glow);

filters DisplayObject's property wants an array with all the filters you want to
associate to the DisplayObject. In our case, we are adding only one filter but we
have to include it in the array anyway.

Test the movie and you will see your spaceship glow.

In the previous picture, you can see the difference between the spaceship without
and with the glow effect applied.

Now your spaceship is ready to fire.

Making spaceship fire
Nobody would face an alien invasion with a harmless spaceship, so we are going to
make it fire.

We need to create a variable to manage bullet_mc DisplayObject and I have said the
spaceship can fire only one bullet at a time, so we need another variable to tell us if
the spaceship is already firing. If it's firing, it cannot fire. If it's not firing, it can fire.

Astro-PANIC!

[190]

Add two new class level variables:

private var spaceship:spaceship_mc;
private var isFiring:Boolean=false;
private var bullet:bullet_mc;

isFiring is the Boolean variable that we'll use to determine if the spaceship is firing.
false means it's not firing.

bullet will represent the bullet itself.

The player will be able to fire with mouse click, so a listener is needed in
Main function:

public function Main() {
 placeSpaceship();
 addEventListener(Event.ENTER_FRAME,onEnterFrm);
 stage.addEventListener(MouseEvent.CLICK,onMouseCk);
}

Now every time the player clicks the mouse, onMouseCk function is called.

This is the function:

private function onMouseCk(e:MouseEvent):void {
 if (! isFiring) {
 placeBullet();
 isFiring=true;
 }
}

It's very easy: if isFiring is false (the spaceship isn't already firing), placeBullet
function is called to physically place a bullet then isFiring is set to true because
now the spaceship is firing.

The same placeBullet function isn't complex:

private function placeBullet():void {
 bullet=new bullet_mc();
 addChild(bullet);
 bullet.x=spaceship.x;
 bullet.y=430;
 var glow:GlowFilter=new GlowFilter(0xFF0000,1,6,6,2,2);
 bullet.filters=new Array(glow);
}

It's very similar to placeSpaceship function, the bullet is created, added to Display
List, placed on screen, and a red glow effect is added.

Chapter 6

[191]

The only thing I would explain is the concept behind x and y properties:

bullet.x=spaceship.x;

Setting bullet's x property equal to spaceship's x property will place the bullet exactly
where the spaceship is at the moment of firing.

bullet.y=430;

430 is a good y value to make the bullet seem as it were just fired from the turret.

Test the movie, and you will be able to fire a bullet with a mouse click.

The bullet at the moment remains static in the point where we fired it.

Making the bullet fly
To make the bullet fly, we have to define its speed and move it upwards. Then
we'll remove it once it leaves the stage and reset isFiring to false to let the
player fire again.

Add a constant to class level variables:

private const BULLET_SPEED:uint=5;
private var spaceship:spaceship_mc;
private var isFiring:Boolean=false;
private var bullet:bullet_mc;

BULLET_SPEED is the amount of pixels the bullet will fly at each frame. We won't
manage upgrades or power-ups, so we can say its value will never change. That's
why it's defined as a constant.

To manage bullet movement, we need to add some lines at the end of
onEnterFrm function.

You may wonder why we are managing both the spaceship and the bullet inside the
same class rather than creating a separate class for each one. You'll discover it when
you manage enemies' movement, later in this chapter.

Astro-PANIC!

[192]

Meanwhile, add this code to onEnterFrm function.

private function onEnterFrm(e:Event):void {
 ...
 if (isFiring) {
 bullet.y-=BULLET_SPEED;
 if (bullet.y<0) {
 removeChild(bullet);
 bullet=null;
 isFiring=false;
 }
 }
}

The new code is executed only if isFiring is true. We are sure we have a bullet on
stage when isFiring is true.

bullet.y-=BULLET_SPEED;

Moves the bullet upward by BULLET_SPEED pixels.

if (bullet.y<0) { ... }

This if statement checks if y property is less than 0. This means the bullet flew off
the screen. In this case we physically remove the bullet from the game with

removeChild(bullet);
bullet=null;

and we give the player the capability of firing again with

isFiring=false;

Test the movie and fire, now your bullets will fly until they reach the top of the stage.
Then you will be able to fire again.

Since nobody wants to fire for the sake of firing, we'll add some enemies to
shoot down.

Chapter 6

[193]

Adding enemies
We want a battle with more and more enemies as the player progresses through
levels, so we have to define a variable to tell us which level is currently being
played and a variable to manage the enemy DisplayObject. Add these two class
level variables:

private const BULLET_SPEED:uint=5;
private var spaceship:spaceship_mc;
private var isFiring:Boolean=false;
private var bullet:bullet_mc;
private var enemy=enemy_mc;
private var level:uint=1;

level is the current level, that starts from 1.

As the game starts, we have to place enemies on the screen according to level
number. Add these lines to Main function:

public function Main() {
 placeSpaceship();
 for (var i:uint=1; i<level+3; i++) {
 placeEnemy(i);
 }
 addEventListener(Event.ENTER_FRAME,onEnterFrm);
 stage.addEventListener(MouseEvent.CLICK,onMouseCk);
}

The for loop will call placeEnemy function (which obviously places an enemy)
for level+2 times, so we'll have 3 enemies at level one, 4 enemies on level two,
and so on.

Notice how an argument with the current enemy count is passed: knowing the
cardinality of an enemy will come in hand later.

As you can imagine, placeEnemy function at the moment is not that much more
than a copy/paste of placeBullet function, we are just placing enemies in a random
position, not too close to the edges of the stage, and not too close to the player.

private function placeEnemy(enemy_level:uint):void {
 enemy=new enemy_mc();
 enemy.x=Math.random()*500+70;
 enemy.y=Math.random()*200+50;
 var glow:GlowFilter=new GlowFilter(0xFF00FF,1,6,6,2,2);
 enemy.filters=new Array(glow);
 addChild(enemy);
}

Astro-PANIC!

[194]

Test the game and you will see three enemies appear in random positions.

Don't worry if in some cases they overlap: the game won't deal with collisions among
enemies so it does not matter.

Moving enemies
As a static enemy won't scare anyone, let's make enemies move.

With the knowledge you have at the moment, you would suggest creating
spaceship_mc class and using an enter frame listener to update each enemy
position. Most scripts relies on Event.ENTER_FRAME event is simultaneously
dispatched to all DisplayObjects listening for it, so you don't have to
synchronize animations.

That's true, but with many DisplayObjects to be updated, this technique although
being the most correct from a programming point of view can dramatically increase
the work of the Flash player.

In this game we won't deal with such an huge number of moving DisplayObjects to
represent a risk for your CPU, anyway it's time to learn something new.

Add this new class level variable:

private const BULLET_SPEED:uint=5;
private var spaceship:spaceship_mc;
private var isFiring:Boolean=false;
private var bullet:bullet_mc;
private var enemy=enemy_mc;
private var level:uint=1;
private var enemyVector:Vector.<enemy_mc>=new Vector.<enemy_mc>();

You just defined your first Vector.

Chapter 6

[195]

A Vector is an array with elements of the same predefined type. Such type is defined
as "base type", and can be any kind of type, including custom classes like I've done.

The base type must be specified when the Vector is created or when an instance is
created using the class constructor.

So to declare a Vector of enemy_mc class we'll use:

private var enemyVector:Vector.<enemy_mc>

Notice how the base type is declared using a dot (.) then writing the class name
between angle brackets (< and >).

Then you would construct it declaring base type again, this way:

enemyVector=new Vector.<enemy_mc>();

Now the question is: when should you use a Vector rather than an Array? You
should use a Vector every time you are dealing with collections of data of the same
type, as Vector management has been proved to be faster than Array management.

Again, the increased performance in this game would be unnoticeable since the data
we manage isn't that big, anyway it's important you know how to use vectors.

Back to our enemies, we have to make them move in a random direction at a
constant speed, but we said tougher enemies will move faster, so it's time to
learn some trigonometry basics. Look at this picture:

We have a circle, and a radius that we know has the same length no matter its angle.
The radius represents the constant enemy speed, to be split into horizontal and
vertical speed, called vx and vy.

Astro-PANIC!

[196]

Thanks to trigonometry, we can determine vx by multiplying the radius by the
cosine of the angle formed by the radius and the horizontal axis, and vy multiplying
the radius by the sine of such angle.

This concept can be translated into AS3 adding these lines at the end of
placeEnemy function:

private function placeEnemy(enemy_level:uint):void {
 ...
 var dir:Number = Math.random()*Math.PI*2;
 enemy.xspeed=enemy_level*Math.cos(dir);
 enemy.yspeed=enemy_level*Math.sin(dir);
 enemyVector.push(enemy);
}

Let's see how we can choose a random direction:

var dir:Number = Math.random()*Math.PI*2;

dir is the variable which stores the random direction. It's a random number between
0 and 360 degrees, just expressed in radians. The radian is the standard unit of
angular measure, and describes the plane angle subtended by a circular arc as the
length of the arc divided by the radius of the arc.

Math.PI returns the value of PI, 3.141592653589793

enemy.xspeed=enemy_level*Math.cos(dir);
enemy.yspeed=enemy_level*Math.sin(dir);

Once we know enemy direction, it's easy to determine its horizontal and vertical
speed thanks to the trigonometry formulas you just learned. Just notice how speed is
multiplied by enemy_level argument. This way the latest enemies to be added are
the faster and consequently the harder to kill.

This simple feature will allow us to have levels with increasing difficulty, with a
new, fastest enemy spaceship to be added at every level.

enemyVector.push(enemy);

Finally, the enemy itself is added to enemyVector Vector with push method as if it
was an array, since push works in the same way for both Arrays and Vectors.

Everything is now ready to make onEnterFrm function iterate through enemyVector
Vector and update each enemy position according to its x and y speed.

Chapter 6

[197]

Add this line to onEnterFrm function:

private function onEnterFrm(e:Event) {
 ...
 enemyVector.forEach(manageEnemy);
}

forEach method (notice the uppercase E) executes a function for each item in
the Vector.

This means manageEnemy function will be executed for each enemyVector item,
but you can't define this function as you like, because it must have some
mandatory arguments.

The function has to be created with three arguments: the current Vector item, the
index of such item, and the Vector itself. Also, the function won't return anything,
so we will declare as void.

This is manageEnemy function:

private function manageEnemy(c:enemy_mc,index:int,v:Vector.<enemy_
mc>):void {
 var currentEnemy:enemy_mc = c;
 currentEnemy.x+=currentEnemy.xspeed;
 currentEnemy.y+=currentEnemy.yspeed;
 if (currentEnemy.x<25) {
 currentEnemy.x=25;
 currentEnemy.xspeed*=-1;
 }
 if (currentEnemy.x>615) {
 currentEnemy.x=615;
 currentEnemy.xspeed*=-1;
 }
 if (currentEnemy.y<25) {
 currentEnemy.y=25;
 currentEnemy.yspeed*=-1;
 }
 if (currentEnemy.y>455) {
 currentEnemy.y=455;
 currentEnemy.yspeed*=-1;
 }
}

let's see first how it has been declared:

private function manageEnemy(c:enemy_mc,index:int,v:Vector.<enemy_
mc>):void

Astro-PANIC!

[198]

As you can see, the three arguments are the current enemy, its index in the Vector
and the Vector itself. All arguments are automatically passed to the function; you
don't have to worry about anything when calling it in the forEach method.

Then in comes a line I used only for the sake of layout:

var currentEnemy:enemy_mc = c;

I was forced to call the first argument c to make a function declaration fit in a single
row, but obviously it would have been better to call it currentEnemy, so I just
created a variable with a more appropriate name.

currentEnemy.x+=currentEnemy.xspeed;
currentEnemy.y+=currentEnemy.yspeed;

That's how I update currentEnemy position according to its xspeed and yspeed
properties.

Enemies cannot fly off the stage, so the remaining lines are just to make them bounce
inside stage edges. I will explain only the first situation: when the enemy is about to
leave the stage to the left.

if (currentEnemy.x<25) { ... }

The if statement checks if enemy x position is less than 25 (enemy's radius). This
would mean the enemy is flying off the stage to the left, and we must prevent it.
First we stop it at the very leftmost position it can go with:

currentEnemy.x=25;

Then, we invert its horizontal speed this way:

currentEnemy.x=25;

The remaining if statements check and prevent the enemies from flying off the stage
respectively to right, up, and down sides.

Test the movie and you will see three enemies moving and bouncing around the
stage, at a constant speed while each one has a different speed.

Chapter 6

[199]

Now enemies are quite dangerous because they move around the screen, anyway
nothing happens when they touch your spaceship.

Obviously hitting an enemy with the spaceship means losing the game or at least one
life, so let's make enemies deadly.

Being killed by an enemy
Both enemies and the spaceship have a perfect circular shape. This will help us to
determine when an enemy and the spaceship collide. Being basically two circles, we
can say they collide when the distance between their centers is less than the sum of
both the radius.

Let's start creating a quick function to determine the distance between two Sprites
using the Pythagorean Theorem:

private function distance(from:Sprite,to:Sprite):Number {
 var distX:Number=from.x-to.x;
 var distY:Number=from.y-to.y;
 return distX*distX+distY*distY;
}

There isn't that much to explain, since we are just applying a world famous formula,
but I want you to notice I am not performing any square root because it's quite
CPU-expensive. It won't be a problem as long as I remember to compare the collision
distance applying the power of two, which is way faster than applying a square root.

Everything is ready to check for collisions, so add these lines at the end of
manageEnemy function:

private function manageEnemy(c:enemy_mc,index:int,v:Vector.<enemy_
mc>):void {
 ...
 if (distance(spaceship,currentEnemy)<3025) {
 die();
 }
}

Look at this statement:

if (distance(spaceship,currentEnemy)<3025) { ... }

It determines if the distance between the spaceship and the current enemy is less
than 3025, which is 25 (enemy radius) + 30 (spaceship radius) = 55 (collision
distance) by the power of two. Easy and fast. Obviously you are free to store
all these values in constants; I am using these raw values for a matter of speed.

Astro-PANIC!

[200]

Once an enemy collides with the spaceship, die function is called. Here it is:

private function die():void {
 var glow:GlowFilter=new GlowFilter(0x00FFFF,1,10,10,6,6);
 spaceship.filters=new Array(glow);
 removeEventListener(Event.ENTER_FRAME,onEnterFrm);
 stage.removeEventListener(MouseEvent.CLICK,onMouseCk);
}

I am sure you figured out how it works: first a new, bigger glow is applied to the
spaceship, and then all the event listeners are removed. The game stops.

Test the game, and let an enemy hit the spaceship. The game will stop with the
enemy hitting a greatly glowing spaceship and nothing more will happen.

That's enough at the moment, because before making something interesting happen
when the spaceship dies, we must make it able to kill enemies with its bullets.

Killing an enemy
Knowing the bullet has a perfect circular shape, there's nothing easier at this time
than letting the spaceship kill an enemy. We have to check if the distance between
the bullet (if any) and the enemy is less than the sum of their radius, just as we made
it with the spaceship.

At the end of manageEnemy function, add these lines:

private function manageEnemy(c:enemy_mc,index:int,v:Vector.<enemy_
mc>):void {
 ...
 if (isFiring) {
 if (distance(bullet,currentEnemy)<841) {
 killEnemy(currentEnemy);
 }
 }
}

Chapter 6

[201]

First we check if there's a bullet flying around the game just looking at isFiring
value. If it's true, then we see if the distance between the current spaceship and the
bullet is less than 841, which is 25 (enemy radius) + 4 (bullet radius) = 29 (collision
distance) by the power of two. In this case, killEnemy function is called; just like die
function was called when the enemy and the spaceship collided. The only difference
is we need to know which enemy the player killed, so we pass it as argument. Again,
feel free to replace numbers with constants.

This is killEnemy function:

private function killEnemy(theEnemy:enemy_mc):void {
 var glow:GlowFilter=new GlowFilter(0xFF00FF,1,10,10,6,6);
 theEnemy.filters=new Array(glow);
 removeEventListener(Event.ENTER_FRAME,onEnterFrm);
 stage.removeEventListener(MouseEvent.CLICK,onMouseCk);
}

The function works absolutely the same way as die function does: adds a glow to the
dying enemy and completely stops the game.

Test the movie and shoot to an enemy, and you will see it glow and the game
will stop.

At this time all main events are defined. We can work on level progression.

Killing an enemy—for good
A level is completed when all enemies have been killed. When you kill an enemy, the
game must continue rather than stop like it does now. We must flag enemies killed
by the spaceship so they won't harm anymore, and let the game continue.

First, when we create a new enemy, let's set a new property called killed. It will be
true if the enemy has been killed, so it starts with false.

private function placeEnemy(enemy_level:uint):void {
 enemy=new enemy_mc();
 enemy.killed=false;
 ...
}

Astro-PANIC!

[202]

Then we have to heavily recode killEnemy function. We won't remove listeners as
we don't want the game to stop, but we'll set killed property to true and remove
the bullet as if it had flown out of the stage.

private function killEnemy(theEnemy:enemy_mc):void {
 var glow:GlowFilter=new GlowFilter(0xFF00FF,1,10,10,6,6);
 theEnemy.filters=new Array(glow);
 // don't remove listeners
 theEnemy.killed=true;
 removeChild(bullet);
 bullet=null;
 isFiring=false;
}

Last but not least, we'll update enemy position and check for collision with the
player or the bullet only if the enemy is still alive, that means its killed property
is false.

private function manageEnemy(c:enemy_mc,index:int,v:Vector.<enemy_
mc>):void {
 var currentEnemy:enemy_mc=c;
 if (! currentEnemy.killed) {
 ...
 }
}

This way the whole function is executed only if killed property is false.

Test the movie, and you will be able to kill all enemies.

At this time the player would expect to see killed enemies removed from the screen,
maybe with some kind of animation.

Chapter 6

[203]

Killing an enemy—with style
To make something happen to the enemy when it's about to die, we could make it
grow and fade out. It's a good and simple way to animate its death.

Moreover, we have to remove dead enemies from enemyVector Vector because
there's no point in managing them as they should be removed from stage.

We know there is only one bullet at a time, so there can be only one enemy hit
by a bullet in a single frame. This is precious information because it allows us to
manage all deaths with a single class level variable, which we'll call enemyToRemove,
indicating the index in enemyVector Vector of the enemy to remove. It starts at -1
which means there's no enemy to remove.

private const BULLET_SPEED:uint=5;
private var spaceship:spaceship_mc;
private var isFiring:Boolean=false;
private var bullet:bullet_mc;
private var enemy=enemy_mc;
private var level:uint=1;
private var enemyVector:Vector.<enemy_mc>=new Vector.<enemy_mc>();
private var enemyToRemove:int=-1;

Once the variable is declared, we have to add a new block of code to manage dying
enemies. Do you remember the whole manageEnemy function is executed only if
killed property is false?

Now it's time to execute some code when it's true and the enemy has been hit by
the bullet.

private function manageEnemy(c:enemy_mc,index:int,v:Vector.<enemy_
mc>):void {
 var currentEnemy:enemy_mc=c;
 if (! currentEnemy.killed) {
 ...
 } else {
 currentEnemy.width++;
 currentEnemy.height++;
 currentEnemy.alpha-=0.01;
 if (currentEnemy.alpha<=0) {
 removeChild(currentEnemy);
 currentEnemy=null;
 enemyToRemove=index;
 }
 }
}

Astro-PANIC!

[204]

Let's see what we are doing:

currentEnemy.width++;
currentEnemy.height++;

Increases enemy width and height to make it bigger.

currentEnemy.alpha-=0.01;

Makes it a bit less opaque decreasing its alpha property by 0.01.

if (currentEnemy.alpha<0) { ... }

Checks if the alpha property is less than 0. This means the enemy is completely
transparent and it's time to remove it from the game.

removeChild(currentEnemy);
currentEnemy=null;

Removes the enemy from the Display List and clears its variable.

enemyToRemove=index;

Finally, setting the new currentEnemy variable to index, that represents the current
index in enemyVector Vector.

Now in onEnterFrm function we can remove the corresponding item from the
Vector. Doing it in a function called by forEach method would produce some
warnings as you are making the Vector shorter while it's currently being scanned.

At the end of onEnterFrm function, add these lines:

private function onEnterFrm(e:Event):void {
 ...
 if (enemyToRemove>=0) {
 enemyVector.splice(enemyToRemove,1);
 enemyToRemove=-1;
 }
}

Their meaning is quite obvious: if enemyToRemove has a value greater than its default
value -1, then remove the item from enemyVector Vector with splice method, then
set enemyToRemove to -1 again as there aren't any more enemies to remove.

Chapter 6

[205]

splice method adds elements to and removes elements from the Vector. The same
method is also available for arrays. In our case, the first parameter (enemyToRemove)
is the index of the element where the deletion begins, and the second parameter (1)
the number of elements to be deleted. Basically I am saying the Vector to remove
one element starting from index enemyToRemove. An optional third parameter can
be used to provide a list of one or more comma-separated values to insert into the
Vector starting from the index specified in the first parameter. We don't need this
optional third parameter in this case.

Test the movie and shoot to an enemy to see it explode.

The game now starts to look good, but once you destroyed all enemies
nothing happens.

Advancing levels
Once all enemies have been destroyed, the player must be able to play the next level,
with more enemies moving faster.

For our convenience, we should manage level creation with a function, changing
Main function removing the for loop and adding a new function called playLevel.

public function Main() {
 placeSpaceship();
 playLevel();
 addEventListener(Event.ENTER_FRAME,onEnterFrm);
 stage.addEventListener(MouseEvent.CLICK,onMouseCk);
}

Astro-PANIC!

[206]

This function is just a cut/paste of the for loop previously included in Main
function, but this way we can call playLevel from elsewhere.

private function playLevel():void {
 for (var i:uint=1; i<level+3; i++) {
 placeEnemy(i);
 }
}

And in this specific case, we are calling it from onEnterFrm function once we
removed an enemy:

private function onEnterFrm(e:Event) {
 ...
 if (enemyToRemove>=0) {
 enemyVector.splice(enemyToRemove,1);
 enemyToRemove=-1;
 if (enemyVector.length==0) {
 level++;
 playLevel();
 }
 }
}

If the length of enemyVector Vector is 0, there are no enemies left, so it's time to
increase level variable and call playLevel function to start a new level.

Test the movie and try to beat as many levels as you can.

In the previous picture, level 2 with four enemies and level 4 with six enemies. The
game gets harder as the player progresses through levels.

Now, something for the score maniacs.

Chapter 6

[207]

Managing current score and high score
When playing games with a specific goal, such as saving the princess or escaping
from the castle, players know exactly why they are playing: they must save the
princess or escape from the castle.

In games like Astro-PANIC!, where there's no goal and you just have to survive as
long as possible, the only way to have players come back to our game and play it
again is giving the possibility to save their best score.

People will play again and again to achieve a better score.

At this time, we need two more class level variables: one to save the current score,
which we call score, and another variable called hiscore, which will save our best
score ever.

Add these two new variables:

private const BULLET_SPEED:uint=5;
private var spaceship:spaceship_mc;
private var isFiring:Boolean=false;
private var bullet:bullet_mc;
private var enemy=enemy_mc;
private var level:uint=1;
private var enemyVector:Vector.<enemy_mc>=new Vector.<enemy_mc>();
private var enemyToRemove:int=-1;
private var score:uint=0;
private var hiscore:uint=0;

Finally, it's time to make a good use of the level dynamic text. We'll display the
number of the enemy. The higher the number, the faster the enemy, and the more
points it will give once killed. This will help the player to choose which enemy to
kill, making his own strategy.

private function placeEnemy(enemy_level:uint):void {
 enemy=new enemy_mc();
 enemy.level.text = enemy_level;
 ...
}

Once an enemy dies, the score is updated. Although being a very simple game, we
can add complex scoring system by giving the enemy a score based on its level and
its height.

Astro-PANIC!

[208]

The higher you kill an enemy, the more points it will give you.

private function killEnemy(theEnemy:enemy_mc):void {
 ...
 score+=int(theEnemy.level.text)*(4-Math.floor(theEnemy.y/100));
 trace(score);
}

Once you die, I want the score to be written on the output window, and eventually
the high score to be updated.

private function die():void {
 var glow:GlowFilter=new GlowFilter(0x00FFFF,1,10,10,6,6);
 spaceship.filters=new Array(glow);
 removeEventListener(Event.ENTER_FRAME,onEnterFrm);
 stage.removeEventListener(MouseEvent.CLICK,onMouseCk);
 trace("Your score: "+score);
 trace("Current hiscore: "+hiscore);
 if (score>hiscore) {
 trace("CONGRATULATIONS!! NEW HISCORE");
 hiscore=score;
 }
}

There's not that much to explain in this code, as it's just a bunch of screen outputs.

Test the movie and play until you die:

You should see in the output window something like this:

6
9
...
56
62
66
Your score: 66
Current hiscore: 0
CONGRATULATIONS!! NEW HISCORE

Chapter 6

[209]

So you are able to manage scores and high scores.

The big problem is the high score is reset to 0 every time you start a new game,
making it useless. We have to find a way to save data on players' local computers.

Saving data on your local computer
AS3 provides a class, SharedObject, to let us save a limited amount of data on our
local computer. The class does not create cookies, but something very similar called
LocalSharedObjects, and the concept is the same.

It's very important to understand that LocalSharedObjects maintain local
persistence. This means that you can play the game, make an high score, turn off
your computer, and next time you'll play the game on the same computer, it will
retrieve the high score.

Exactly what we need. Let's see how to use it. First, we need to import the
SharedObject class:

import flash.display.Sprite;
import flash.events.Event;
import flash.events.MouseEvent;
import flash.filters.GlowFilter;
import flash.net.SharedObject;

Then we will remove hiscore class level variable as we won't use it anymore as
it just keeps the high score when the script is running, and we will create a new
variable called sharedHiScore, to handle with SharedObject class.

private const BULLET_SPEED:uint=5;
private var spaceship:spaceship_mc;
private var isFiring:Boolean=false;
private var bullet:bullet_mc;
private var enemy=enemy_mc;
private var level:uint=1;
private var enemyVector:Vector.<enemy_mc>=new Vector.<enemy_mc>();
private var enemyToRemove:int=-1;
private var score:uint=0;
private var hiscore:uint=0; // remove this one
private var sharedHiScore:SharedObject;

Astro-PANIC!

[210]

At this time, when the game is run, we can face two cases:

1. The game has never been run on the computer, so we have to somehow
initialize the SharedObject.

2. The game has already been run on the computer, no matter if someone made
an high score or not, no matter even if someone has played. In this case the
SharedObject is initiazlied.

To make this, we need to add this code to Main function:

public function Main() {
 sharedHiScore = SharedObject.getLocal("hiscores");
 if (sharedHiScore.data.score==undefined) {
 sharedHiScore.data.score = 0;
 trace("No High Score found");
 }
 else {
 trace("Current High Score: "+sharedHiScore.data.score);
 }
 sharedHiScore.close();
 placeSpaceship();
 playLevel();
 addEventListener(Event.ENTER_FRAME,onEnterFrm);
 stage.addEventListener(MouseEvent.CLICK,onMouseCk);
}

Let's see its meaning:

sharedHiScore = SharedObject.getLocal("hiscores");

getLocal method returns a reference to a locally persistent SharedObject (in this
case hiscores) that is available only on the current client. If the SharedObject does
not already exist, getLocal method creates one.

if (sharedHiScore.data.score==undefined) { ... }

When looking at score value inside hiscores SharedObject, if it's undefined it
means there isn't any variable called score in hiscores SharedObject or there isn't
any hiscores SharedObject at all.

sharedHiScore.data.score = 0;
trace("No High Score found");

Chapter 6

[211]

In this case we need to initialize score variable in hiscores SharedObject. We'll set
it to zero. At the same time, we print a message in the Output window saying we did
not find any high score.

else { trace("Current High Score: "+sharedHiScore.data.score); }

If we found a high score, we show it in the Output window.

sharedHiScore.close();

When we are done with the SharedObject, we have to close it. close method does
this job.

Now, when the player dies, we have to check his score with the SharedObject
high scores and eventually update it. The last part of die function must be
changed this way:

private function die():void {
 var glow:GlowFilter=new GlowFilter(0x00FFFF,1,10,10,6,6);
 spaceship.filters=new Array(glow);
 removeEventListener(Event.ENTER_FRAME,onEnterFrm);
 stage.removeEventListener(MouseEvent.CLICK,onMouseCk);
 trace("Your score: "+score);
 sharedHiScore = SharedObject.getLocal("hiscores");
 trace("Current hiscore: "+sharedHiScore.data.score);
 if (score>sharedHiScore.data.score) {
 trace("CONGRATULATIONS!! NEW HISCORE");
 sharedHiScore.data.score = score;
 }
 sharedHiScore.close();
}

As you can see, the SharedObject is opened once again, and its score variable is
compared with score class level variable. As you can see, both variables can have
the same name because they refer to different classes. Then if needed we update the
SharedObject and finally we close it.

Test the movie and the first time you will see in the Output window:

No High Score found

Now play a game, and if when you die you scored, let's say, 18, you will see in the
Output window:

Your score: 18

Current hiscore: 0

Astro-PANIC!

[212]

CONTRATULATIONS!! NEW HISCORE

At this time you must close and restart the game as it does not provide a "replay",
and once you restart it (you can also restart you computer if you want) you will see:

Current High Score: 18

The game remembered the latest high score you made.

Summary
The most important things you learned during this chapter are the capability of
adding filters on the fly to your DisplayObjects and the feature of saving data on
your computer using SharedObjects. You can manage any kind of save game with
SharedObjects, such as the latest level beaten, the amount of gold the player owns,
or any other kind of information.

Where to go now
To provide a better experience to players, you could place some dynamic text fields
showing the current level and the score, as well as the high score. Then you can add
some lines to onMouseCk function, you can make the player restart the game if he
clicks the mouse when the game is over. You only have to reset the score, the level,
and the variable that states the game is over.

Bejeweled
Bejeweled is the first "modern" (its first release was in 2001) game to be discussed in
this book. I chose to dedicate the last three chapters of this book to modern games
to show you how most modern successful casual games are still relatively easy to
code, meaning in this niche of market good ideas prevail over game complexity.
Millions of copies of Bejeweled have been sold, and its Facebook version is played
by a million people every month.

The game is played on a 8x8 grid with 64 gems of seven different kinds placed over
it. The objective is to swap one gem with an adjacent gem to form a horizontal or
vertical streak of three or more gems. These gems then disappear and new ones fall
from the top to fill in gaps.

In this chapter you will code a fully working Bejeweled prototype learning
these techniques:

do while loop, to create loops with at least one iteration
DisplayObjects visible property, to quickly make objects invisible
strings split method, to split a string into an array of substrings using a
given separator
with statement, to define a default object to be used in the script

This time we'll skip game design because there is a lot of work to do. Anyway,
throughout this book you've already seen how to make a good game design
document, so it won't be a problem to do it on your own.

•

•

•

•

Bejeweled

[214]

Creating documents and objects
Create a new file (File | New) then from New Document window select
Actionscript 3.0. Set its properties as width to 640px, height to 480px, background
color to #000033 (a dark blue), and frame rate to 30. Also define the Document Class
as Main and save the file as bejeweled.fla.

We are using two objects: one with seven frames containing all gems, called
gem_mc, and one for the square that will indicate the gems we are selecting,
called selector_mc.

All assets will be drawn with registration point at 0,0 and designed to fit in a
60x60 tile.

In bejeweled.fla, create two new Movie Clip symbols and call them selector_mc
and gem_mc. Set them as exportable for ActionScript and leave all other settings at
their default values, just like you did in previous chapters.

Then draw something like this:

Chapter 7

[215]

In the upper left corner you can see selector_mc, while the remaining pictures
represent the seven gems used in the game.

Placing the gems
Placing the gems on stage may seem just a matter of adding some random
DisplayObjects to Display List, but you'll see that we'll find ourselves in trouble
very soon.

The idea: We are going to populate the array and physically place the jewels in the
same script, so we'll fill the array with random integer numbers between 0 and 6,
to represent each of the possible jewels. At the same time, we'll place a gem in the
proper position and show the proper frame.

The development: You already know what we need to place the jewels as it's the
same concept as placing cards, mines, crates, or whatever kind of asset in a tile-based
game. Anyway, let's recap once again. We need:

a two-dimensional array to represent the game field
a DisplayObject to act as a container for all jewels
an instance of gem_mc object

A couple of for loops will populate the array with random numbers, as gem_mc
objects will be placed on the stage.

Without closing bejeweled.fla, create a new file and from New Document window
select ActionScript 3.0 Class. Save this file as Main.as in the same path you saved
bejeweled.fla. Then write:

package {
 import flash.display.Sprite;
 import flash.events.MouseEvent;
 public class Main extends Sprite {
 private var jewels:Array=new Array();
 private var gemsContainer:Sprite=new Sprite();
 private var gem:gem_mc;
 public function Main() {
 jewelsInit();
 }
 private function jewelsInit():void {
 addChild(gemsContainer);
 for (var i:uint=0; i<8; i++) {
 jewels[i]=new Array();
 for (var j:uint=0; j<8; j++) {
 jewels[i][j]=Math.floor(Math.random()*7);

•

•

•

Bejeweled

[216]

 gem = new gem_mc(jewels[i][j],i,j);
 gemsContainer.addChild(gem);
 }
 }
 }
 }
}

First, I am importing the required classes for this game, such as Sprite and
MouseEvent since the game will be controlled by the mouse.

Then we need three class level variables: jewels is the array that will contain game
field data, gemsContainer is the DisplayObject that will contain all gems, and gem is
a gem_mc instance, that is the gem itself.

In Main function, the constructor, we only call jewelsInit function which will
handle initial jewels placement.

This function is very simple, as it only adds gemsContainer to Display List, then
creates and populates an 8x8 two-dimensional array with random integer numbers
between 0 and 7. As a new jewels element is added, a new gem_mc instance
is created.

The only thing you haven't seen before is gem_mc constructor, that wants three
arguments: the value of the gem itself, its row position and its column position.

Obviously gem_mc class will manage gems appearance and position.

Without closing bejeweled.fla, create a new file and from New Document window
select ActionScript 3.0 Class. Save this file as gem_mc.as in the same path you saved
bejeweled.fla. Then write:

package {
 import flash.display.MovieClip;
 public class gem_mc extends MovieClip {
 public function gem_mc(val:uint,row:uint,col:uint) {
 gotoAndStop(val+1);
 name=row+"_"+col;
 x=col*60;
 y=row*60;
 }
 }
}

Notice the class extends MovieClip as it has a timeline. As you can see, it just shows
the proper frame according to val value, and places the gem considering we are
playing in squared tiles with 60 pixel sides.

Chapter 7

[217]

I also gave a name to this DisplayObject, to make it easily selectable once needed.
The name is made by the row number followed by an underscore, followed by
column number. You already saw this concept during the making of Minesweeper.

Test the movie and you will see your game field filled with gems. That's when bad
news comes into play. Test the movie a couple more times, and you will be playing a
game like this one:

What's wrong? We already have three or more adjacent gems of the same kind in a
row or in a column.

In Bejeweled, the game field starts with no more than two adjacent gems of the same
kind, as it's up to the player switching gems to make successful streaks.

Placing the gems for real
Preventing the game field from starting with successful streaks means coding all the
required routines to see if a given gem is part of a successful streak. There is a lot to
code, but the good news is the functions to check for successful streaks that we are
about to write are the same as we will use when the player starts swapping gems.

The idea: When it's time to place a gem, check if the gem we are about to place will
form a successful streak. In this case, keep generating random gems until it's no
longer part of a streak. Finally place the gem.

The development: Checking for a successful streak is not different from checking
for victory in Connect 4. We can even say it's easier since we only have to look
horizontally and vertically, without caring about diagonals.

Bejeweled

[218]

Following the concepts seen during the making of Connect 4, let's start creating some
basic functions.

The first function we need is one that tells us if there is a certain gem in a given row
and column, assuming row and column values can even be wrong.

Let's call it checkGem and make it return true if there is a gem in the row-th row and
col-th column, false elsewhere.

private function checkGem(gem:uint,row:int,col:int):Boolean {
 if (jewels[row]==null) {
 return false;
 }
 if (jewels[row][col]==null) {
 return false;
 }
 return gem==jewels[row][col];
}

It just checks for jewels[row][col] value to be equal to gem once we verified it's not
a null value. We can have null values when we try to look for a gem in an illegal
position, which is outside the populated array.

What can we do with this function? We can build other functions to check whether a
given gem is part of a streak or not.

We know a gem is a part of a streak when there are at least other two adjacent gems
of the same kind horizontally or vertically. So it's easy to create a function to see if
the gem is part of a horizontal streak.

Given a row and a column position, we will keep counting gems at its left and at its
right until we find a gem that does not match, or an illegal position.

This is rowStreak function, with row and col arguments representing the position of
the gem to check, it returns the number of matching gems.

private function rowStreak(row:uint,col:uint):uint {
 var current:uint=jewels[row][col];
 var streak:uint=1;
 var tmp:int=col;
 while (checkGem(current,row,tmp-1)) {
 tmp--;
 streak++;
 }
 tmp=col;
 while (checkGem(current,row,tmp+1)) {

Chapter 7

[219]

 tmp++;
 streak++;
 }
 return (streak);
}

Let's give it a brief look:

var current:uint=jewels[row][col];

Saving in current variable the value of jewels[row][col] array, that is the gem we
will look for.

var streak:uint=1;

streak variable will keep count of the streak. It's set at 1 because the starting gem
itself is a part of the streak.

var tmp:int=col;

tmp is just a temporary variable to save col value as we will change it during the
script and we want to save its original value for a later use.

while (checkGem(current,row,tmp-1)) { ... }

This while loop scans the gems on the left. Since tmp is the column value, decreasing
it means moving one column left. This is what we do inside the loop:

tmp--;
streak++;

tmp value is decreased to look more at the left, and streak is increased as if we are
inside the loop, it means we found a matching gem.

Once we exit the loop, tmp value is restored to col value and we start scanning on
the right in the same way.

At the end of the function, streak value is returned.

In the same way we can code colStreak function, that checks for vertical streaks.

private function colStreak(row:uint,col:uint):uint {
 var current:uint=jewels[row][col];
 var streak:uint=1;
 var tmp:int=row;
 while (checkGem(current,tmp-1,col)) {
 tmp--;
 streak++;
 }

Bejeweled

[220]

 tmp=row;
 while (checkGem(current,tmp+1,col)) {
 tmp++;
 streak++;
 }
 return (streak);
}

At this time, we can determine when a gem is part of a successful streak in a row or
in a column.

To complete the set of functions, we just need another one that tells us if a gem in a
given position is part of a streak, no matter if horizontal or vertical.

That's what isStreak function does. It just checks if there is a horizontal or a vertical
successful streak, that is a streak longer than two gems.

private function isStreak(row:uint,col:uint):Boolean {
 return rowStreak(row,col)>2||colStreak(row,col)>2;
}

Once we know when we have a streak, we also can prevent jewelsInit function to
generate one. We'll simply force the generation of a random gem until it's not part of
a successful streak.

Change jewelsInit function this way:

private function jewelsInit():void {
 addChild(gemsContainer);
 for (var i:uint=0; i<8; i++) {
 jewels[i]=new Array();
 for (var j:uint=0; j<8; j++) {
 do {
 jewels[i][j]=Math.floor(Math.random()*7);
 } while (isStreak(i,j));
 gem = new gem_mc(jewels[i][j],i,j);
 gemsContainer.addChild(gem);
 }
 }
}

Now test the movie, and you won't see any successful streak.

Chapter 7

[221]

The key lies in the do while loop used in the function.

The do while loop works in the same way as a while loop, with the exception that
the code block is executed at least once, because the while condition is checked at
the end of the block.

We are ready to play.

Selecting a gem
Now the player must be able to select gems since he's supposed to swap them to
form streaks.

The idea: When the player clicks, we can detect mouse coordinates, check if he
clicked inside the game area and know which gem he selected.

The development: You already drew the selector, so it's just a matter of placing the
selector in the proper tile when the player clicks the mouse.

First we need a new class level variable to create a selector_mc instance.

private var jewels:Array=new Array();
private var gemsContainer:Sprite=new Sprite();
private var gem:gem_mc;
private var selector:selector_mc=new selector_mc();

Notice how I already used the constructor new selector_mc() to have it ready to
be used.

Bejeweled

[222]

Now, in Main constructor function, we have to add it to Display List and add a
listener to be triggered once the player clicks the mouse.

public function Main() {
 jewelsInit();
 addChild(selector);
 selector.visible=false;
 stage.addEventListener(MouseEvent.CLICK,onClick););
}

The script does not show anything you don't already know, excluding we want the
selector to be invisible when the game starts, because the player still has to click.

There are lots of ways to make a DisplayObject invisible. For instance, we
could set its alpha property to zero, or place it outside the visible area acting
on x and y properties.

This time we'll use a new way to make it invisible, setting its visible property
to false.

What's the difference between setting visible property to false and setting the
alpha property to 0? DisplayObjects that are not visible are disabled, this means if
you set a button to not visible, it cannot be clicked.

When the player clicks the mouse, we must ensure he's clicking inside the game area.
Game area is made by a 8x8 grid of tiles, and each tile is a square with a 60 pixel side,
so the whole game area is a square that measures 60 x 8=480 pixels.

Once we know the player clicked inside the game area, we can place the selector and
make it visible.

This is onClick function:

private function onClick(e:MouseEvent):void {
 if (mouseX<480&&mouseX>0&&mouseY<480&&mouseY>0) {
 var selRow:uint=Math.floor(mouseY/60);
 var selCol:uint=Math.floor(mouseX/60);
 selector.x=60*selCol;
 selector.y=60*selRow;
 selector.visible=true;
 }
}

The if statement checks for the mouse to be inside the game area, then a couple of
variables are created:

var selRow:uint=Math.floor(mouseY/60);

Chapter 7

[223]

selRow represents the row of the selected gem and it's the floor of the mouse
y-coordinate divided by 60 (tile size).

In the same way, selCol is the column of the selected gem.

Once we know selected gem's row and column starting from mouse coordinates, it's
easy to move the selector to its proper place:

selector.x=60*selCol;
selector.y=60*selRow;

Finally it's time to show it.

selector.visible=true;

Setting visible property to true will make it visible, in the correct place.

Test the movie, and click on a gem. The selector will place around such gem.

But in Bejeweled the player doesn't just select gems. He must swap them.

Preparing to swap gems
Not all gems can be swapped. To tell the truth, very few gems can, since a gem can
only be swapped with one of its adjacent gems, horizontally or vertically.

The idea: When a gem is selected, and the player clicks on another gem, we must
check if the gems are adjacent. If they aren't, then deselect the previously selected
gem and select the new one. If they are adjacent, then we are ready to swap them.

The development: Everything runs around the concept of "being adjacent", so we
need a function to determine if two gems are adjacent.

Let's express this concept in everyday words: two gems are adjacent if they are on
the same column and the first gem is right under or right below the second, or they
are on the same row and they are next to each other.

Bejeweled

[224]

Translated into AS3 it sounds this way:

private function isAdjacent(row1:int,col1:int,row2:int,col2:int):
Boolean {
 if ((row1==row2+1||row1==row2-1)&&col1==col2) {
 return true;
 }
 return (col1==col2+1||col1==col2-1)&&row1==row2;
}

isAdjacent function wants four arguments: the row and the column of both gems,
and returns true if they are adjacent, false otherwise.

Notice how I placed return true inside the if statement. When a function executes
a return, it ends. So, if the script enters in the if statement and finds the first
return, it will never execute the second one, as it would if the script could continue
its execution.

Another, more optimized way to code isAdjacent would be:

isAdjacent(row1:int,col1:int,row2:int,col2:int):Boolean {
 return Math.abs(row1-row2)+Math.abs(col1-col2)==1
}

Now we have to keep track of the currently selected gem, if any, to know what to
do when the player clicks on a gem. Two class level variables called pickedRow and
pickedCol will store the row and the column of the picked gem.

private var jewels:Array=new Array();
private var gemsContainer:Sprite=new Sprite();
private var gem:gem_mc;
private var selector:selector_mc=new selector_mc();
private var pickedRow:int=-10;
private var pickedCol:int=-10;

Look how their initial values are -10. Since at the beginning of the game there isn't
any selected gem, I assigned pickedRow and pickedCol an impossible value of
my choice.

From now on, when both variables are set at -10, it means there isn't any
picked gem.

You could also define a constant called something like NONE_PICKED and set it at -10
to make the code more readable.

Chapter 7

[225]

Now when the player clicks the mouse, the script should act this way:

If there isn't any picked gem, place the selector on the clicked gem and set it
as picked
If there is already a picked gem, check if the picked and the clicked gem
are adjacent
If they are adjacent, prepare to swap gems, remove the selector and set no
gem as picked
If they aren't, move the selector on the clicked gem and set it as picked

Change onClick function this way:

private function onClick(e:MouseEvent):void {
 if (mouseX<480&&mouseX>0&&mouseY<480&&mouseY>0) {
 var selRow:uint=Math.floor(mouseY/60);
 var selCol:uint=Math.floor(mouseX/60);
 if (! isAdjacent(selRow,selCol,pickedRow,pickedCol)) {
 pickedRow=selRow;
 pickedCol=selCol;
 selector.x=60*pickedCol;
 selector.y=60*pickedRow;
 selector.visible=true;
 } else {
 trace("going to swap gems");
 pickedRow=-10;
 pickedCol=-10;
 selector.visible=false;
 }
 }
}

Then test the movie, and try to pick some gems. The game will behave as in
this picture:

•

•

•

•

Bejeweled

[226]

From left to right, the orange gem is picked and the player clicks on the green gem,
that is not adjacent. So the green gem becomes picked, and when the player clicks on
the yellow gem, that is adjacent, in the Output window you will see.

going to swap gems

Let’s see how the script does work:

if (! isAdjacent(selRow,selCol,pickedRow,pickedCol)) { ... }

This if statement is the core of the function: it checks for the clicked and the selected
gems not to be adjacent. If there isn't any picked gem, pickedRow and pickedCol are
set to -10, so isAdjacent function will be forced to return false. If there is a picked
gem, isAdjacent will tell us if it's adjacent to the selected gem.

pickedRow=selRow;
pickedCol=selCol;

If they aren't adjacent, or there wasn't any picked gem, set pickedRow and
pickedCol to respectively selRow and selCol. This means the just clicked
gem turns into a picked gem. Also, the selector is placed on such a gem.

else {
 trace("going to swap gems");
 pickedRow=-10;
 pickedCol=-10;
 selector.visible=false;
}

This is the code that will be executed when the clicked and the picked gems are
adjacent: the debug string shown previously is prompted on the Output window;
pickedRow and pickedCol are set to -10 as there are no gems picked anymore, and
the selector is made invisible.

Now you are ready to swap gems.

Swapping gems
Swapping gems is the key of the game, as this allows the player to create
successful streaks.

The idea: It takes two steps to swap two gems:

swapping their values in the array
swapping the position of their DisplayObjects

•

•

Chapter 7

[227]

As you may see, once you know the two gems can be swapped, it's very easy.

The development: As usual we are making a set of functions to do the dirty jobs and
keeping our main functions clear and easy to read.

First, we need a function to swap two elements in jewels array.

private function swapJewelsArray(row1:uint,col1:uint,row2:uint,col2:
uint):void {
 var tmp:uint=jewels[row1][col1];
 jewels[row1][col1]=jewels[row2][col2];
 jewels[row2][col2]=tmp;
}

The function is so easy that there's no need to comment it.

Another, more interesting function we are about to create will swap the gem
DisplayObjects.

private function swapJewelsObject(row1:uint,col1:uint,row2:uint,col2:
uint):void {
 with (gemsContainer.getChildByName(row1+"_"+col1)) {
 x=col2*60;
 y=row2*60;
 name="tmp";
 }
 with (gemsContainer.getChildByName(row2+"_"+col2)) {
 x=col1*60;
 y=row1*60;
 name=row1+"_"+col1;
 }
 gemsContainer.getChildByName("tmp").name=row2+"_"+col2;
}

Basically it's the same old concept used to swap any kind of object, with a temporary
object saving the first object we will overwrite, just as you saw when you coded
swapJewelsArray function.

Another interesting thing in swapJewelsObject function is the with statement.

with sets its parameter as the default object to be used during all its block of code,
reducing the amount of code to be written and consequently preventing errors.

Bejeweled

[228]

This means this code:

with (gemsContainer.getChildByName(row1+"_"+col1)) {
 x=col2*60;
 y=row2*60;
 name="tmp";
}

is the same as this one:

gemsContainer.getChildByName(row1+"_"+col1).x=col2*60;
gemsContainer.getChildByName(row1+"_"+col1).y=row2*60;
gemsContainer.getChildByName(row1+"_"+col1).name="tmp";

but is a lot easier to read.

With these two brand new functions, swapping gems is very easy. Just use them to
swap gems when previously you wrote "going to swap gems":

private function onClick(e:MouseEvent):void {
 if (mouseX<480&&mouseX>0&&mouseY<480&&mouseY>0) {
 var selRow:uint=Math.floor(mouseY/60);
 var selCol:uint=Math.floor(mouseX/60);
 if (! isAdjacent(selRow,selCol,pickedRow,pickedCol)) {
 pickedRow=selRow;
 pickedCol=selCol;
 selector.x=60*pickedCol;
 selector.y=60*pickedRow;
 selector.visible=true;
 } else {
 swapJewelsArray(pickedRow,pickedCol,selRow,selCol);
 swapJewelsObject(pickedRow,pickedCol,selRow,selCol);
 pickedRow=-10;
 pickedCol=-10;
 selector.visible=false;
 }
 }
}

Test the movie, select a gem and click on an adjacent gem like in this picture:

Chapter 7

[229]

Gems will swap, and the selector will disappear. Now you can swap all
adjacent gems.

At this time, normally I'd write a paragraph about smooth movement, but there is
still a lot to do, and you should be able to do it by yourself as you are dealing with
smooth movements since the first chapters.

Rather, we'll focus on an issue, that is, in Bejeweled you can't swap any couple of
adjacent gems, because the mandatory condition to let you swap gems is at least one
of the swapped gems forms a successful streak.

Swapping gems for real
We already have everything we need to swap gems only when a successful streak
will be made, so this will be a five minutes walk. Take a break because the hardest is
yet to come.

The idea: When you are about to swap two gems, check if the game field with the
swapped gems has a successful streak. Only in this case, proceed swap the gems.

The development: Creating a script to foresee if two swapped gems would form a
successful streak would be a bit complicated as it would require more temporary
variables to come into play, so we will follow a simpler approach.

When the player swaps two adjacent gems, we will update jewels array to
effectively swap the gems. Then we'll check for successful streaks. If a successful
streak is found, we'll update the gems DisplayObjects to make the player see the
swapped gem, restoring jewels array to its initial status otherwise.

How will we be able to restore jewels array if we did not save it anywhere? It is
done by simply swapping its elements again, to make them return in the initial place.

Change onClick function this way:

private function onClick(e:MouseEvent):void {
 if (mouseX<480&&mouseX>0&&mouseY<480&&mouseY>0) {
 var selRow:uint=Math.floor(mouseY/60);
 var selCol:uint=Math.floor(mouseX/60);
 if (! isAdjacent(selRow,selCol,pickedRow,pickedCol)) {
 ...
 } else {
 swapJewelsArray(pickedRow,pickedCol,selRow,selCol);
 if (isStreak(pickedRow,pickedCol)||isStreak(selRow,selCol)) {
 swapJewelsObject(pickedRow,pickedCol,selRow,selCol);

Bejeweled

[230]

 } else {
 swapJewelsArray(pickedRow,pickedCol,selRow,selCol);
 }
 pickedRow=-10;
 pickedCol=-10;
 selector.visible=false;
 }
 }
}

Once jewels array elements have been swapped, we check for successful streaks:

if (isStreak(pickedRow,pickedCol)||isStreak(selRow,selCol)) { ... }

As you can see, we are looking for a successful streak in both gem positions as any of
them, if not both, can be part of a successful streak.

If we have a successful streak, we swap DisplayObjects too, otherwise we
do another

swapJewelsArray(pickedRow,pickedCol,selRow,selCol);

to undo last move.

Test the game and you will be able to swap gems only if at least one of them will be
part of a successful streak.

In the previous picture, the white gem is selected, then the player selects the above
purple triangle to swap, but there wouldn't be any successful streak, so nothing
happens. When the player selects the white gem and swaps it with the purple
triangle on its left, a successful streak can be made, and gems are swapped.

Now, take a deep breath because we'll dive into troubles again.

Chapter 7

[231]

Selecting which gems to remove
Once the player swapped two gems it means there is at least a successful streak, that
is, there are at least three gems to remove. We need to know which gems have to
be removed.

The idea: At this time it's important to know which one of the two swapped gems is
part of a successful streak, or, if the player really made a good move, if both gems are
part of a successful streak. Anyway, for every successful streak, we have to remove
all gems included.

The development: To keep things easy, we are going to create a function that scans
jewels array almost in the same way rowStreaks and colStreaks functions do.
The main difference is we will save the names of the gems to be removed in an array,
for a later use.

Create this new function, removeGems, that wants the row and the column as
arguments of the gem we found being part of a successful streak.

private function removeGems(row:uint,col:uint):void {
 var gemsToRemove:Array=[row+"_"+col];
 var current:uint=jewels[row][col];
 var tmp:int;
 if (rowStreak(row,col)>2) {
 tmp=col;
 while (checkGem(current,row,tmp-1)) {
 tmp--;
 gemsToRemove.push(row+"_"+tmp);
 }
 tmp=col;
 while (checkGem(current,row,tmp+1)) {
 tmp++;
 gemsToRemove.push(row+"_"+tmp);
 }
 }
 if (colStreak(row,col)>2) {
 tmp=row;
 while (checkGem(current,tmp-1,col)) {
 tmp--;
 gemsToRemove.push(tmp+"_"+col);
 }
 tmp=row;
 while (checkGem(current,tmp+1,col)) {
 tmp++;
 gemsToRemove.push(tmp+"_"+col);
 }
 }
 trace("Will remove "+gemsToRemove);
}

Bejeweled

[232]

As said, it's very similar to something like a merge of rowStreaks and colStreaks
functions, with the difference we aren't increasing a counter variable anymore, but
inserting gems' names into an array. gemsToRemove array will save all the names of
the gems that we remove.

Once the function is ready, we just have to call it after any gems swap. We'll need
to call it only once, if only one of the swapped gems is part of a successful streak, or
twice, if both gems are part of a successful streak.

Change onClick function this way:

private function onClick(e:MouseEvent):void {
 if (mouseX<480&&mouseX>0&&mouseY<480&&mouseY>0) {
 var selRow:uint=Math.floor(mouseY/60);
 var selCol:uint=Math.floor(mouseX/60);
 if (! isAdjacent(selRow,selCol,pickedRow,pickedCol)) {
 pickedRow=selRow;
 pickedCol=selCol;
 selector.x=60*pickedCol;
 selector.y=60*pickedRow;
 selector.visible=true;
 } else {
 swapJewelsArray(pickedRow,pickedCol,selRow,selCol);
 if (isStreak(pickedRow,pickedCol)||isStreak(selRow,selCol)) {
 swapJewelsObject(pickedRow,pickedCol,selRow,selCol);
 if (isStreak(pickedRow,pickedCol)) {
 removeGems(pickedRow,pickedCol);
 }
 if (isStreak(selRow,selCol)) {
 removeGems(selRow,selCol);
 }
 } else {
 swapJewelsArray(pickedRow,pickedCol,selRow,selCol);
 }
 pickedRow=-10;
 pickedCol=-10;
 selector.visible=false;
 }
 }
}

As you can see I am calling for removeGems function only if I found a successful
streak. At this point of the script, it's obvious I will find at least one successful streak,
as the gems swap only if one of them forms a successful streak.

Chapter 7

[233]

Test the movie and swap two gems.

If you do something as in this picture, forming a successful streak with the three
top-left rows, in the Output window you will see:

Will remove 0_2,0_1,0_0

Every successful streak of gems will populate gemsToRemove array, no matter the
length of the streak.

Removing gems
We now have a list of gems to be removed, so it's time to remove them from
the game.

The idea: Scan through the gemsToRemove array and remove all the gems.

The development: Removing a gem takes two steps: removing the gem
DisplayObject from Display List, and update jewels array. This leads to a
question: if jewels array contains element from 0 to 6 to represent different
gem types, how can we code the "empty" status? We'll use -1 to say there isn't
any gem in the jewels array.

The first thing to do is looping through the gemsToRemove array, and we'll do it
using the forEach method as we did during the making of Astro-PANIC! although
we used it on a Vector.

Indeed, forEach method works in the same way with arrays too. Add this line to
removeGems function:

private function removeGems(row:uint,col:uint):void {
 ...
 gemsToRemove.forEach(removeTheGem);
}

Now for every element in the gemsToRemove array, removeTheGem function will
be executed. Here we have to remove its DisplayObject and set its corresponding
jewels element to -1.

Bejeweled

[234]

Write removeTheGem function this way:

private function removeTheGem(element:String,index:int,arr:Array):void
{
 with (gemsContainer) {
 removeChild(getChildByName(element));
 }
 var coordinates:Array=element.split("_");
 jewels[coordinates[0]][coordinates[1]]=-1;
}

Did you see how many arguments? It's because of the forEach method structure, as
you should remember from the making of Astro-PANIC!

As you can see, first I remove the gem with removeChild, then it's time to get row
and column positions starting from a string with the name of the gem.

This means, we should find a way to manipulate a string like 3_6 in a way we know
we are working on row 3, column 6.

split string method comes to our help, splitting a string into an array of substrings
obtained as if the argument of split method were a separator.

Following the previous example, splitting 3_6 string using underscore (_) as
argument would produce an array of two elements, containing 3 and 6.

With this line:

var coordinates:Array=element.split("_");

we'll have gem's row and column values respectively in coordinates[0] and
coordinates[1]. Finally we can set the proper jewels element at -1 with:

jewels[coordinates[0]][coordinates[1]]=-1;

Test the movie and swap two gems. The successful streak will disappear.

Now streaks are successfully removed, but above gems should fall down to fill the
empty spaces.

Chapter 7

[235]

Making gems fall
Once each gem is removed, we have to adjust the game field making the above gems
fall down to fill empty spaces.

This is the last hard to develop feature you will encounter in this chapter. After
managing with falling gems, making the rest of the game will be quite easy.

The idea: Starting from the bottom-most row, we must look for empty spaces. Once
an empty space is found, all the gems (if any) in the same column above the empty
space should fall down to fill the empty space.

The development: Obviously the need of adjusting the game field occurs only after
some gems have been removed.

So the entire routine will be called at the end of removeGems function:

private function removeGems(row:uint,col:uint):void {
 ...
 adjustGems();
}

adjustGems function will handle falling gems. Here's how it should work:

Scan jewels array from column to column starting from the bottom-most row.
If an empty (-1) element is found, then look for the upper first non-empty
element in the same column.
If such non-empty element is found, swap it with the empty element found
and adjust its DisplayObject position and name.

It seems harder than it really is. Let's check adjustGems function:

private function adjustGems():void {
 for (var j:uint=0; j<8; j++) {
 for (var i:uint=7; i>0; i--) {
 if (jewels[i][j]==-1) {
 for (var k:uint=i; k>0; k--) {
 if (jewels[k][j]!=-1) {
 break;
 }
 }
 if (jewels[k][j]!=-1) {
 trace("moving gem at row "+k+" to row "+i);
 jewels[i][j]=jewels[k][j];
 jewels[k][j]=-1;
 with(gemsContainer.getChildByName(k+"_"+j)){

•

•

•

Bejeweled

[236]

 y=60*i;
 name=i+"_"+j;
 }
 }
 }
 }
 }
}

First, notice how I am scanning jewels array to look for empty elements:

for (var j:uint=0; j<8; j++) {
 for (var i:uint=7; i>0; i--) {
 if (jewels[i][j]==-1) { ... }
 }
}

I am looping from column to column from the highest row index (7) back to the
lowest (0). Once I find an empty element, I am sure there are no empty elements in
the same column with a greater row index. That is, it's the lowest empty element in
the column.

for (var k:uint=i; k>0; k--) {
 if (jewels[k][j]!=-1) {
 break;
 }
}

At this time, I look for the first element in the same column, with a smaller row
index, that is not empty (different than -1). break ensures k value at the end of this
for loop contains the row index of the first non-empty element, if any. It could have
been done with a while loop, but I liked the idea of the triple for loop.

if (jewels[k][j]!=-1) { ... }

Now I am checking if I really found a non-empty element, or I just ended the for
loop because k value reached 0. If I found a non-empty element, I swap jewels
values and adjust the gem position in order to occupy the empty space I found.

Chapter 7

[237]

Let me explain this with a picture sequence:

The red arrow indicates how the script scans the game field, look how it changes its
direction once it has found an empty spot, and how the lowest gem is being placed
in the empty spot.

Test the movie, and create some successful streak, horizontally or vertically.

Once the gems have been swapped and the streak disappears, the above gems
(if any) fall down as if there was gravity.

Now, we must somehow fill the empty spot falling gems cannot replace with some
new gems.

Bejeweled

[238]

Adding new gems
No matter if you make gems fall to fill empty places, or leave them as they are,
when you remove some gems from the game field, you will need to replace them
with new ones.

The idea: Once the gems have been removed and empty spaces have been filled with
gems from above (if any), we must scan jewels array and create new gems wherever
we find a -1.

The development: I told you this was easy, and this time we just need a couple
of for loops. Obviously new gems will be created at the very end of the gems
removal process, so we'll call the function to replace gems at the very end of
removeGems function.

private function removeGems(row:uint,col:uint):void {
 ...
 replaceGems();
}

And replaceGems function is very easy as it just looks for empty spots where to add
new gems.

private function replaceGems():void {
 for (var i:int=7; i>=0; i--) {
 for (var j:uint=0; j<8; j++) {
 if (jewels[i][j]==-1) {
 jewels[i][j]=Math.floor(Math.random()*7);
 gem=new gem_mc(jewels[i][j],i,j);
 gemsContainer.addChild(gem);
 }
 }
 }
}

I just want you to notice two things:

First, unlike in a game field creation, we don't check for new gems not to form a
successful streak, as combos and bonuses can be assigned if new gems form a streak
with existing ones.

Second, I look for new spots where new gems from the bottom of the gamefield
can be placed. This will add realism to the game if you plan to make some kind of
animations of falling gems. This way the lowest gems will be the first to fall.

Chapter 7

[239]

Test the movie and remove some gems, and empty spots will be replaced by
new gems.

Congratulations! You are only one step away from completing the prototype.

Dealing with combos
Although gems are currently moved and added after a successful streak, we don't
check if the falling-on added gems create some streaks and need to be removed. This
is a very important feature in Bejeweled as it allows players to make combos and
earn more points.

The idea: After any gem is moved or added, check for successful streaks.

The development: Gems are added with replaceGems function, and moved
with adjustGems.

We simply have to include an if statement in both the functions to see if the last
added/adjusted gem is part of a successful streak.

Change replaceGems function this way:

private function replaceGems():void {
 for (var i:int=7; i>=0; i--) {
 for (var j:uint=0; j<8; j++) {
 if (jewels[i][j]==-1) {
 jewels[i][j]=Math.floor(Math.random()*7);
 gem=new gem_mc(jewels[i][j],i,j);
 gemsContainer.addChild(gem);
 if (isStreak(i,j)) {
 trace("COMBO");

Bejeweled

[240]

 removeGems(i,j);
 }
 }
 }
 }
}

and in the same way, this is how adjustGems function should be:

private function adjustGems():void {
 for (var j:uint=0; j<8; j++) {
 for (var i:uint=7; i>0; i--) {
 if (jewels[i][j]==-1) {
 for (var k:uint=i; k>0; k--) {
 if (jewels[k][j]!=-1) {
 break;
 }
 }
 if (jewels[k][j]!=-1) {
 jewels[i][j]=jewels[k][j];
 jewels[k][j]=-1;
 with(gemsContainer.getChildByName(k+"_"+j)){
 y=60*i;
 name=i+"_"+j;
 }
 if (isStreak(i,j)) {
 trace("COMBO");
 removeGems(i,j);
 }
 }
 }
 }
 }
}

Test the game and play. If you are lucky, sometimes you should see

COMBO

appearing in your Output window. Now, something for the lazy players.

Chapter 7

[241]

Giving hints
Sometimes a player can't see the next move to do, so they need a hint. We must code
a routine to give them such a hint.

The idea: We have plenty of space on the right of the game field, so the game will
give a hint when you click on the right of the game field. How can we give the hint?

For each gem, starting from top-left to bottom-right, we'll see if swapping it with the
gem at its right (if any) or with the gem below (if any) gives a streak. To make you
see the code works, the script will show all possible hints.

The development: In onClick function, when the player does not click in the game
field, we will start the routine to give hints. We already said we can't foresee the
game field with swapped gems, so we will physically swap gems twice, making the
second swap act like an undo, just like you did when you swapped gems manually.

Change onClick function this way:

private function onClick(e:MouseEvent):void {
 if (mouseX<480&&mouseX>0&&mouseY<480&&mouseY>0) {
 ...
 } else {
 for (var i:uint=0; i<8; i++) {
 for (var j:uint=0; j<8; j++) {
 if (i<7) {
 swapJewelsArray(i,j,i+1,j);
 if (isStreak(i,j)||isStreak(i+1,j)) {
 trace(i+","+j+" -> "+(i+1)+","+j);
 }
 swapJewelsArray(i,j,i+1,j);
 }
 if (j<7) {
 swapJewelsArray(i,j,i,j+1);
 if (isStreak(i,j)||isStreak(i,j+1)) {
 trace(i+","+j+" -> "+i+","+(j+1));
 }
 swapJewelsArray(i,j,i,j+1);
 }
 }
 }
 }
}

Bejeweled

[242]

The whole code is very intuitive; anyway we'll see together how it works:

for (var i:uint=0; i<8; i++) {
 for (var j:uint=0; j<8; j++) {
 …
 }
}

This is the classical couple of for loops to scan through the array.

if (i<7) { ... }

Since I want to swap each gem with the one at its right, I have to ensure that I am not
on the rightmost column.

swapJewelsArray(i,j,i+1,j);

Swapping gems

if (isStreak(i,j)||isStreak(i+1,j)) { ... }

Checking if at least one of the swapped gems forms a streak

trace(i+","+j+" -> "+(i+1)+","+j);

writing the hint on the Output window

swapJewelsArray(i,j,i+1,j);

Swapping back gems.

The rest of the code follows the same concept applied to vertical swapping.

Test the movie and in a situation like this one:

Chapter 7

[243]

you will get these hints:

2,6 -> 3,6

4,5 -> 4,6

5,1 -> 6,1

5,2 -> 6,2

6,2 -> 6,3

6,5 -> 7,5

These are all and the only possible moves. Enjoy your Bejeweled game.

Summary
During the making of Bejeweled you learned how to code the prototype of a top
selling game. Besides the new technical concepts you saw, I would like you to
note how successful games are often built upon simple prototypes, with stunning
graphics and polished gameplay. Coding these kind of games is nothing you can't
do, no matter how many copies they sell.

Where to go now
It's clear the most interesting missing feature is the smooth movement. To add it,
you will need an ENTER_FRAME listener because it's the easiest way you can manage
gems movements and disappearings. I would point you to this script I published on
my blog: bit.ly/dJNPq2. Here you will find a complete yet quite unreadable code
(it was created to make the entire game in less than 2KB) of a Bejeweled game with
some kind of movement. With the concepts learned in this chapter and that code,
you should be able to create your perfect Bejeweled game.

Puzzle Bobble
Puzzle Bobble is an arcade puzzle game featuring the characters and the overall look
and feel of the popular Bubble Bobble arcade game.

The player controls something like a cannon that cannot be moved but only rotated,
loaded with a randomly colored bubble.

Once the player fires, the fired bubble moves along a straight line, eventually
bouncing off the sides of the game area, until it reaches the top of the game area or
touches another bubble.

Player's goal is clearing the stage by forming chains of three or more adjacent
bubbles of the same color. Bubbles forming part of this chain, as well as bubbles
hanging from them are removed from the stage.

Basically Puzzle Bobble is a "match three and remove" tile-based game just like
Bejeweled, but the interesting feature is the way the tiles are placed in the game field.
We aren't dealing with square tiles but with hexagonal tiles, and this will affect both
the way we'll draw the game field and the gameplay.

In this chapter you will code a fully working Puzzle Bobble prototype learning
these techniques:

Detecting when the player releases a key
Detecting when more than one key has been pressed
Rotating DisplayObjects
Drawing circles
Handling non-squared tiles

This time too we are going to skip the game design as it's something you
already mastered.

•
•
•
•
•

Puzzle Bobble

[246]

Creating documents and assets
Create a new file (File | New) then from New Document window select
Actionscript 3.0. Set its properties as width to 640px, height to 480px, background
color to #000033 (a dark blue), and frame rate to 30. Also define the Document Class
as Main and save the file as puzzlebobble.fla.

There will be two actors in this movie: the cannon and the bubbles. We will draw
bubbles with six different colors in a Movie Clip called bubble_mc, while the cannon
will be drawn in a Movie Clip called cannon_mc.

Create these two symbols and make them exportable for ActionScript, as usual.

These are the assets I created:

Bubbles are 36x36 pixel circles with registration point in their center. The cannon
is large enough to contain a bubble inside it, and its registration point is in its
center too.

You are free to draw them as you want, just remember during the whole game
creation I will be referring to 36x36 tiles.

Chapter 8

[247]

Placing and moving the cannon
We are shooting bubbles with the cannon, so it will be the first thing to be added in
the game.

The idea: The cannon must be placed in the bottom of the screen, in the middle of
the game field. Players will be able to rotate it with LEFT and RIGHT arrow keys.

The development: Before we start coding we have to create Main class.

Without closing puzzlebobble.fla, create a new file and from New Document
window select ActionScript 3.0 Class. Save this file as Main.as in the same path you
saved puzzlebobble.fla.

At this time we'll also import all required classes, like KeyboardEvent and Event.

I am going to store into two constants the rotation speed of the cannon and the
radius of the bubbles, as I know I'll be using these values a lot during the making
of this game.

Write this code in Main.as:

package {
 import flash.display.Sprite;
 import flash.events.KeyboardEvent;
 import flash.events.Event;
 public class Main extends Sprite {
 private const ROT_SPEED:uint=2;
 private const R:uint=18;
 private var cannon:cannon_mc;
 private var left:Boolean=false;
 private var right:Boolean=false;
 public function Main() {
 placeCannon();
 stage.addEventListener(KeyboardEvent.KEY_DOWN,onKDown);
 stage.addEventListener(KeyboardEvent.KEY_UP,onKUp);
 addEventListener(Event.ENTER_FRAME,onEFrame);
 }
 }
}

There is nothing new, so I am giving you only a brief overview of the code.

ROT_SPEED is the rotation speed of the cannon, measured in degrees/frame.

Puzzle Bobble

[248]

R is the radius of the bubbles. I had to use a one letter variable for a page layout
purpose, and I want you to remember using one letter variables is not a good
practice, especially the class level variables. You should change it with
BUBBLE_RADIUS or something else with a clear meaning.

cannon is the cannon_mc instance, while left and right are Boolean variables that
will tell us if left and right keys are being pressed. I am introducing a new way to
handle keys being pressed, that you'll want to use when there could be more than
one single key pressed.

In my function we call placeCannon function that will obviously place the cannon
on the stage, and we set the listeners. Notice there is a new listener, the latest in the
script, KeyboardEvent.KEY_UP.

KEY_UP is triggered when the user releases a key. Now the big question is: why
should I check for the player to release keys? All in all, the cannon is moved by
pressing the keys, not by releasing them.

You're right, but using only KEY_DOWN listener will allow us only to get the latest key
pressed. This means if the player presses LEFT arrow, we can know the player is
pressing such arrow, but if the player presses RIGHT arrow without releasing LEFT
key, KEY_DOWN will detect the latest key pressed RIGHT but there's no way to know
whether LEFT arrow is still pressed or not.

This will make your life impossible when you are making games when more keys
can be pressed at the same time.

Anyway, at the moment let's place the cannon. Add placeCannon function:

private function placeCannon():void {
 cannon=new cannon_mc();
 addChild(cannon);
 cannon.y=450;
 cannon.x=R*8;
}

The function just constructs and adds to Display List the cannon. Then y property is
set to 450 to place the cannon in the bottom end of the stage, while x property is set
to R*8, which means the cannon is aligned with the end of the fourth bubble. Since
we have eight bubbles for each row, it's in the middle of the game area.

onKDown and onKUp functions will just assign true or false to left and right
variables according to which key has been pressed or released.

Chapter 8

[249]

onKDown function will set such variables to true if LEFT or RIGHT arrow keys are
being pressed:

private function onKDown(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case 37 :
 left=true;
 break;
 case 39 :
 right=true;
 break;
 }
}

While onKUp will set them to false once they are released:

private function onKUp(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case 37 :
 left=false;
 break;
 case 39 :
 right=false;
 break;
 }
}

This way we can know at any time if LEFT arrow, RIGHT arrow or both are pressed.

You already know what 37, 38, 39, and 40 key codes stand for. To make the code
more readable, you can import flash.ui.Keyboard and use constants called
Keyboard.LEFT, Keyboard.RIGHT, Keyboard.UP, and Keyboard.DOWN rather than
37, 39, 38, and 40 respectively.

At this time onEFrame function just updates cannon rotation according to left and
right values:

private function onEFrame(e:Event):void {
 if (left) {
 cannon.rotation-=ROT_SPEED;
 }
 if (right) {
 cannon.rotation+=ROT_SPEED;
 }
}

Puzzle Bobble

[250]

Test the movie, and you will be able to rotate the cannon counterclockwise
pressing LEFT arrow, and clockwise pressing RIGHT arrow. Try to press LEFT
and RIGHT arrows together to see the cannon stop, because the two opposite
rotations will nullify.

Notice how I rotate the cannon using rotation property.

rotation sets the rotation property of a DisplayObject in degrees from its
original orientation. You can rotate it clockwise with values from 0 to 180 and
counterclockwise with values from 0 to -180.

Any value outside -180 - 180 range will be adjusted to fit in such a range, so for
instance -190 is equal to 170, and 190 is equal to -170.

Drawing the game field
Although it's not necessary to literally "draw" the game field, doing it will help us
to deal with this particular kind of tile-based game. We know we are dealing with
hexagonal tiles, but since hexagons can be drawn inside a circle, we will simplify the
script drawing circular tiles.

The idea: We will draw on the stage the circular tiles that will define the game field.
This will make us see where bubbles should be placed.

The development: As usual we need a DisplayObject to act as a container for
everything related to game field. A new class level variable called bubCont will do
this job:

private const ROT_SPEED:uint=2;
private const RADIUS:uint=18;
private var cannon:cannon_mc;
private var left:Boolean=false;
private var right:Boolean=false;
private var bubCont:Sprite;

Chapter 8

[251]

Then the first thing Main function has to do is placing the container. We'll delegate
this task to a function called placeContainer.

public function Main() {
 placeContainer();
 ...
}

placeContainer function has to add the container to Display List and draw the 11x8
tile environment. Add this function:

private function placeContainer():void {
 bubCont=new Sprite();
 addChild(bubCont);
 bubCont.graphics.lineStyle(1,0xffffff,0.2);
 for(var i:uint=0;i<11;i++){
 for(var j:uint=0;j<8;j++){
 bubCont.graphics.drawCircle(R+j*R*2,R+i*R*2,R);
 }
 }
}

It's just a couple of for loops to iterate through a tile-based environment like you
already did during the development of almost every game examined in this book.

The only difference is we aren't drawing squares, but circles.

drawCircle method draws a circle. As with all graphics methods, you have to set
a line style before you can call it, unless the default style is ok to use. I am doing it
some lines above, with:

bubCont.graphics.lineStyle(1,0xffffff,0.2);

drawCircle wants three arguments, respectively the horizontal position of the
center, in pixels, relative to the registration point of the parent DisplayObject, the
vertical position, assigned with the same concept, and the radius, in pixels.

This line

bubCont.graphics.drawCircle(R+j*R*2,R+i*R*2,R);

will draw the series of circles. Remember R is the radius of the bubbles, and it will be
the same for the circles.

Puzzle Bobble

[252]

Test the movie and you will see all circles forming the game field.

Everything worked fine, except some circles aren't placed in the right place.

Counting lines from top to bottom starting from zero, even lines are drawn correctly,
while odd lines are not.

Circles in odd lines must be shifted by R pixels to the right and there can only be
seven circles.

We must be able to draw alternate rows

Drawing the game field with alternate
rows
In odd rows, there can be only seven circles, shifted by R pixels on the right.

The idea: Check whether we are drawing an odd or an even row. Then if we are
drawing an even row, draw circles in the same way you just drew, if we are drawing
an odd row, shift circles' center by R pixels on the right and don't draw the last circle.

The development: Change placeContainer function this way:

private function placeContainer():void {
 bubCont=new Sprite();
 addChild(bubCont);
 bubCont.graphics.lineStyle(1,0xffffff,0.2);
 for (var i:uint=0; i<11; i++) {
 for (var j:uint=0; j<8; j++) {
 if (i%2==0) {
 bubCont.graphics.drawCircle(R+j*R*2,R+i*R*2,R);
 } else {
 if (j<7) {
 with (bubCont.graphics) {
 drawCircle(2*R+j*R*2,R+i*R*2,R);
 }

Chapter 8

[253]

 }
 }
 }
 }
}

As we enter the couple of for loops, we check if i is an even number using the
modulo operator. In this case, we are drawing circles in the same old way.

If it's not, we check if j (representing the number of circles in the same row) is less
than 7 as we don't want to draw the eighth circle, then we draw the circles shifting
them by R pixels on the right.

Don't worry about the with statement as I was forced to use it in order to write the
code without line breaks.

I suggest you to replace this code:

with (bubCont.graphics) {
 drawCircle(2*R+j*R*2,R+i*R*2,R);
}

with this single line:

bubCont.graphics.drawCircle(2*R+j*R*2,R+i*R*2,R);

Notice how the x-coordinate of the circle center is R+j*R*2 for the even rows and
2*R+j*R*2 for the odd, and the difference is R, just as we wanted.

Test the movie and you will have your set of alternate rows.

And here comes another problem. Do you see those gaps between circles of different
rows, shown by the arrow?

That's not the right way to draw the game field. The vertical distance among rows
must be less than R. We have to determine it.

Puzzle Bobble

[254]

Drawing the game field according to
Pythagoras
We must find the right vertical distance among rows to let the game field
render properly.

The idea: We'll use Pythagorean Theorem to determine the vertical distance.

The distance between two circles must always be 2*R, but circles placed on odd rows
are shifted to the right by R pixels. So what's the vertical distance?

In the following picture you will see the desired result:

If we build a right triangle whose hypotenuse is the distance between two circles
(cyan line) and the legs are respectively the amount of pixel odd rows circles are
shifted to the right (green line), the other leg (yellow line) represents the vertical
distance.

Follow the formulas shown in the picture and you will find the vertical distance is
determined by R multiplied by the square root of 3.

The development: We need a new class level constant I called D for a book layout
purpose (you should call it something like VERTICAL_DISTANCE) which will store the
value of the vertical distance according to the R value, so you should add it after R
has been declared.

private const ROT_SPEED:uint=2;
private const R:uint=18;
private const D:Number=R*Math.sqrt(3);
private var cannon:cannon_mc;
private var left:Boolean=false;
private var right:Boolean=false;
private var bubCont:Sprite;

Chapter 8

[255]

Then you just need to change the vertical coordinate of circle origins from R+i*R*2
to R+i*D. Change placeContainer function this way:

private function placeContainer():void {
 bubCont=new Sprite();
 addChild(bubCont);
 bubCont.graphics.lineStyle(1,0xffffff,0.2);
 for (var i:uint=0; i<11; i++) {
 for (var j:uint=0; j<8; j++) {
 if (i%2==0) {
 bubCont.graphics.drawCircle(R+j*R*2,R+i*D,R);
 } else {
 if (j<7) {
 with (bubCont.graphics) {
 drawCircle(2*R+j*R*2,R+i*D,R);
 }
 }
 }
 }
 }
}

Now test the movie and you will finally have your game field properly rendered.

Now everything is ready to fire some bubbles. First, let's load them into the cannon.

Loading the cannon with a bubble
First, we have to load the cannon with a bubble.

The idea: Create a bubble and place it into the cannon.

Puzzle Bobble

[256]

The development: We need a variable to create a bubble_mc instance, so add bubble
class level variable.

private const ROT_SPEED:uint=2;
private const R:uint=18;
private const D:Number=R*Math.sqrt(3);
private var cannon:cannon_mc;
private var left:Boolean=false;
private var right:Boolean=false;
private var bubCont:Sprite;
private var bubble:bubble_mc;

Once the container has been drawn and the cannon has been placed, we can place the
bubble. Delegate it to loadBubble function in Main constructor.

public function Main() {
 placeContainer();
 placeCannon();
 loadBubble();
 stage.addEventListener(KeyboardEvent.KEY_DOWN,onKDown);
 stage.addEventListener(KeyboardEvent.KEY_UP,onKUp);
 addEventListener(Event.ENTER_FRAME,onEFrame);
}

What should loadBubble function do? We only need to create a new bubble_mc
instance, add it to Display List and place it inside the cannon, showing a random
frame. This is loadBubble function:

private function loadBubble():void {
 bubble = new bubble_mc();
 addChild(bubble);
 bubble.gotoAndStop(Math.floor(Math.random()*6))+1;
 bubble.x=R*8;
 bubble.y=450;
}

Bubble's x and y properties are the same as cannon ones, to place it exactly inside the
cannon, while the frame shown is a random number between 1 and 6.

Notice how I did not add the bubble to bubCont game field container because a
bubble is not part of the game field until it stops in a place.

Chapter 8

[257]

Test the movie and watch your rotating cannon loaded with a bubble.

The color of the bubble should change every time you test the movie as it's
randomly picked.

The player is now ready to fire.

Firing the bubble
To fire the bubble, the player must press UP arrow key.

The idea: Detect when the player presses UP arrow key, and then calculate the
horizontal and vertical speed of the bubble according to the cannon's rotation.

The development: This part has some similarities with the enemy ships' movement
you dealt with during the making of Astro-PANIC!

Before we start checking for the UP arrow key, we'll define the bubble speed and
some other variables. Let's make a couple of new declarations:

private const ROT_SPEED:uint=2;
private const R:uint=18;
private const D:Number=R*Math.sqrt(3);
private const DEG_TO_RAD:Number=0.0174532925;
private const BUBBLE_SPEED:uint=10;
private var cannon:cannon_mc;
private var left:Boolean=false;
private var right:Boolean=false;
private var bubCont:Sprite;
private var bubble:bubble_mc;
private var fire:Boolean=false;
private var vx,vy:Number;

BUBBLE_SPEED is the speed of the bubble, in pixels per frame. It's way slower
than the original game speed and it's definitively too slow if you want to have an
enjoyable game, but it will allow us to understand what happens to the bubble once
it has been fired. Once you completed the game, you should raise the value from
10 to 15.

Puzzle Bobble

[258]

DEG_TO_RAD is the ratio between degrees and radians, that is, PI/180. For instance,
if you want to convert 45 degrees into radians, you will have to multiply 45 by
DEG_TO_RAD. Converting degrees to radians is very important as cannon rotation is
measured in degrees, while trigonometry methods such as Math.cos and Math.sin
work with radians.

fire is the classic variable to determine whether the player is firing or not.

vx and vy are the horizontal and vertical speed of the bubble, to be calculated
according to BUBBLE_SPEED and cannon rotation.

We also have to add a new case to the switch statement in onKDown function to
check if the key pressed is UP arrow key:

private function onKDown(e:KeyboardEvent):void {
 switch (e.keyCode) {
 case 37 :
 ...
 case 39 :
 ...
 case 38 :
 if (! fire) {
 fire=true;
 var radians=(cannon.rotation-90)*DEG_TO_RAD;
 vx=BUBBLE_SPEED*Math.cos(radians);
 vy=BUBBLE_SPEED*Math.sin(radians);
 }
 break;
 }
}

Once the player presses UP arrow key (case 38), if he's not already firing, then
set fire to true, get the cannon rotation in radians and calculate vx and vy using
trigonometry in the same way you calculated horizontal and vertical speed of enemy
spaceships during the making of Astro-PANIC!

Notice I am subtracting 90 from cannon rotation since when the cannon is heading
up, its real rotation is zero degrees while the effective rotation to vertically fire a
bubble should be -90.

In the picture, you can see the different angle systems; on the left the one used by the
cannon rotation and on the right the angles as Flash manages them.

Chapter 8

[259]

That's why we have to subtract 90 to cannon rotation. Once we know the player fired
and the horizontal and vertical speeds of the bubble, we have to update bubble's
position in onEFrame function adding these lines at the end:

private function onEFrame(e:Event):void {
 ...
 if (fire) {
 bubble.x+=vx;
 bubble.y+=vy;
 }
}

We can do it just by adding vx and vy to x and y properties respectively.

Test the movie and press UP arrow key to fire the bubble.

Everything works fine, but the bubble flies out of the game area and never stops.

Puzzle Bobble

[260]

Letting bubble bounce and stop
To make a complete shooting routine, bubble must bounce off game field sides and
stop once it touches the upper side.

The idea: To make bubble bounce off game field sides, we have to check if the
bubble is leaving the game field to the left or right side. In both cases, inverting the
horizontal speed will make the bubble bounce off. When it's about to leave the game
field to the upper side, we have to stop its movement.

The development: We only need to make some changes to onEFrame function, as it's
the one and only one that handles bubble movement. The concept is very simple to
the one developed to make enemy spaceships bounce off the game area during the
making of Astro-PANIC! so it does not need that much commenting:

private function onEFrame(e:Event):void {
 ...
 if (fire) {
 bubble.x+=vx;
 bubble.y+=vy;
 if (bubble.x<R) {
 bubble.x=R;
 vx*=-1;
 }
 if (bubble.x>R*15) {
 bubble.x=R*15;
 vx*=-1;
 }
 if (bubble.y<R) {
 bubble.y=R;
 fire=false;
 }
 }
}

The new code has been added in the block of code executed if fire variable is true.

if (bubble.x<R) { ... }

Since bubble_mc DisplayObject has the registration point at 0,0 if its horizontal
position is less than R (its radius) this means the bubble is leaving the game field
to the left.

bubble.x=R;

Chapter 8

[261]

Keeping the bubble completely inside the game field

vx*=-1;

Inverting horizontal position.

The same concept is applied when the bubble is leaving the game area to the right,
while when it's leaving to the top—we just adjust its vertical position and set fire to
false. Now the bubble won't move anymore.

Test the movie and shoot some bubbles with an angle so they have to bounce off
game field sides. Then they'll stop at the very top of the game field.

Now we have to face a new problem: Puzzle Bobble is a tile-based game, and this
means bubbles cannot be placed anywhere, they should be inside their cells.

This does not happen, as you can see from the previous picture, with the green
bubble not absolutely aligned with its cell.

Adjusting bubble position and reloading
The final step of firing a bubble is adjusting its final position so that it perfectly fits
inside a cell. Only at this time we can load another bubble into the cannon.

The idea: Once the bubble reached the top of the game field, we have to place it in
the closest cell available. Then, we'll place a new randomly colored bubble into the
cannon, allowing the player to shoot again and starting the game loop again.

The development: When the bubble reaches the top of the game area, we'll call a
new function to delegate the parking process of the bubble.

Puzzle Bobble

[262]

Change onEFrame function to execute only a function called parkBubble, when the
bubble is about to leave the game field to the top.

private function onEFrame(e:Event):void {
 ...
 if (fire) {
 ...
 if (bubble.y<R) {
 // remove everything else
 parkBubble();
 }
 }
}

parkBubble function finds the closest column (that is, the closest horizontal cell) to
the bubble.

private function parkBubble():void {
 var col:uint=Math.floor(bubble.x/(R*2));
 var placed_bubble:bubble_mc = new bubble_mc();
 bubCont.addChild(placed_bubble);
 placed_bubble.x=(col*R*2)+R;
 placed_bubble.y=R;
 placed_bubble.gotoAndStop(bubble.currentFrame);
 removeChild(bubble);
 fire=false;
 loadBubble();
 trace("adjusted bubble to fit at column "+col);
}

To find the closest column, you just need to find the highest integer lower than
the division of the horizontal position of the bubble by the tile width, that is, R*2,
this way:

var col:uint=Math.floor(bubble.x/(R*2));

Then, we have to create a new bubble, that will be a copy of the current one, and add
it to Display List:

var placed_bubble:bubble_mc = new bubble_mc();
bubCont.addChild(placed_bubble);

Notice this time the new bubble is added as a child of bubCont DisplayObject.

Chapter 8

[263]

The new bubble will be placed inside the just found column and will show the
same frame (that is the same bubble color) as the current one. We do it with these
three lines:

placed_bubble.x=(col*R*2)+R;
placed_bubble.y=R;
placed_bubble.gotoAndStop(bubble.currentFrame);

Notice how y property is set to R because I know I am placing the bubble on the
first row.

Finally the current bubble is removed from Display List, fire is set to false to let
the player fire again and the loadBubble function is called again to load another
bubble into the cannon.

Test the movie and fire some bubbles: they will all fit in a cell.

Moreover, the debug message in the Output window in this case will say (assuming
the first bubble is the white one):

adjusted bubble to fit at column 2
adjusted bubble to fit at column 1

But obviously there must be another problem: bubbles do not stack, and if you fire a
bubble in a cell already occupied by another bubble, this will just overlay it.

Allowing bubbles to stack
It's time to let the bubbles stack, which means we have to make them solid, so they
can't overlay anymore.

The idea: When the bubble is moving, check if it collides with the bubbles already
placed in the game field. In this case, find the closest available cell at once, without
waiting for the bubble to leave the game field to the top.

The development: We are working with collisions between circles, so we'll use
Pythagorean Theorem to see if the two bubbles collide.

Puzzle Bobble

[264]

Let's create a new function called collide that wants a bubble as argument and will
return true if it collides with the fired bubble, and false otherwise.

It's the same concept we used to check for collisions between enemy and player
spaceships in the making of Astro-PANIC!

private function collide(bub:bubble_mc):Boolean {
 var dist_x:Number=bub.x-bubble.x;
 var dist_y:Number=bub.y-bubble.y;
 return Math.sqrt(dist_x*dist_x+dist_y*dist_y)<=2*R;
}

Notice this time I used sqrt method, but you know rewriting the last line this way:

return dist_x*dist_x+dist_y*dist_y<=(2*R)*(2*R);

increases performances.

Once we are able to know whether the fired bubble is colliding with other bubbles,
it's time to check for collisions at each frame, until it reaches the top of the game field.

Modify onEFrame function by adding this code at the end of the block of code to be
executed if fire is true.

private function onEFrame(e:Event):void {
 ...
 if (fire) {
 ...
 if (bubble.y<R) {
 parkBubble();
 } else {
 for (var i:uint = 0; i<bubCont.numChildren; i++) {
 var tmp:bubble_mc;
 tmp=bubCont.getChildAt(i) as bubble_mc;
 if (collide(tmp)) {
 parkBubble();
 break;
 }
 }
 }
 }
}

The new code begins with else because it will be executed only if the bubble did not
reach the top of the game area.

for (var i:uint = 0; i<bubCont.numChildren; i++) { ... }

Chapter 8

[265]

Looping through all bubCont DisplayObject children means looping through all
bubbles placed on the game field.

Next two lines assign the i-th placed bubble to tmp variable. I had to write the code
in two lines for a layout purpose, but you may want to write it this way:

var tmp:bubble_mc=bubCont.getChildAt(i) as bubble_mc;

The core of the script is the check for collisions:

if (collide(tmp)) {
 parkBubble();
 break;
}

If there is a collision, call parkBubble function to make the bubble fit into the closest
cell and break the cycle as there is no point in continuing to look for collisions.

Unfortunately, parkBubble function was made to work properly only when the
bubble is about to leave the stage to the top, that is when it's on the first row.

And, even worse, you know horizontal cell positions vary, as cells in odd rows are
shifted to the right by R pixels.

We need to heavily rewrite the function:

private function parkBubble():void {
 var row:uint=Math.floor(bubble.y/D);
 var col:uint;
 if (row%2==0) {
 col=Math.floor(bubble.x/(R*2));
 } else {
 col=Math.floor((bubble.x-R)/(R*2));
 }
 var placed_bubble:bubble_mc = new bubble_mc();
 bubCont.addChild(placed_bubble);
 if (row%2==0) {
 placed_bubble.x=(col*R*2)+R;
 } else {
 placed_bubble.x=(col*R*2)+2*R;
 }
 placed_bubble.y=(row*D)+R;
 placed_bubble.gotoAndStop(bubble.currentFrame);
 removeChild(bubble);
 fire=false;
 loadBubble();
}

Puzzle Bobble

[266]

Let's see what we are doing:

var row:uint=Math.floor(bubble.y/D);

Now the first thing is determining the row. The concept is the same applied
to the column, but we must know which row we are working on to adjust
horizontal position.

var col:uint;

Declares the variable that will store column number

if (row%2==0) { ... }

If the row is even, the column is calculated in the same way as before.

else {
 col=Math.floor((bubble.x-R)/(R*2));
}

otherwise column value is determined in a very similar manner, just shifting the
horizontal position by R pixels on the left (look how R is subtracted to x property).

The same concept is applied when it's time to place the parked bubble, there are two
similar ways to place it, one for the even rows (same as in the previous example),
and one for odd rows.

Finally, y property is calculated in a way that fits for each row, this way:

placed_bubble.y=(row*D)+R;

Test the movie and you will be able to shoot bubbles that will stack like in the
original game.

Probably you will notice it's a bit hard to place bubbles in some spots as they seem to
react too much to collisions. This happens because in collide function we wanted
bubbles not to touch any other bubble with a perfect collision detection.

Chapter 8

[267]

You will make the game a bit more playable if you change this line:

return Math.sqrt(dist_x*dist_x+dist_y*dist_y)<=2*R;

this way:

return Math.sqrt(dist_x*dist_x+dist_y*dist_y)<=2*R-4;

Subtracting some pixels from the collision detection. This will make the fired bubble
pass more easily through stacked bubbles.

Unfortunately, video games live in a strange world. We worked hard to let the player
place the bubbles, and now we'll have to work twice as hard to let him/her remove it
from the game.

Detecting bubble chains
When the player forms a chain of at least three bubbles of the same color, they have
to disappear from the game.

Before we make them disappear we have to detect if we have chains.

The idea: Once a new bubble is placed on the game field, we can use a variant of the
flood fill algorithm that we used during the creation of Minesweeper to check if the
bubble is a part of a chain.

The development: We worked on the visual part of the game until now. It's time to
add some code to be executed behind the scene to check for chains.

First, we need to save the game field status in an array, and we'll need another array
to store all bubbles that are part of a chain. Add two new class level variables:

private const ROT_SPEED:uint=2;
private const R:uint=18;
private const D:Number=R*Math.sqrt(3);
private const DEG_TO_RAD:Number=0.0174532925;
private const BUBBLE_SPEED:uint=10;
private var cannon:cannon_mc;
private var left:Boolean=false;
private var right:Boolean=false;
private var bubCont:Sprite;
private var bubble:bubble_mc;
private var fire:Boolean=false;
private var vx,vy:Number;
private var fieldArray:Array;
private var chainArray:Array;

Puzzle Bobble

[268]

fieldArray is the array representing the field.

chainArray will store all bubbles that are part of a chain.

During the execution of placeContainer function we will set up field_array
array too.

private function placeContainer():void {
 fieldArray=new Array();
 bubCont=new Sprite();
 addChild(bubCont);
 bubCont.graphics.lineStyle(1,0xffffff,0.2);
 for (var i:uint=0; i<11; i++) {
 fieldArray[i]=new Array();
 for (var j:uint=0; j<8; j++) {
 if (i%2==0) {
 bubCont.graphics.drawCircle(R+j*R*2,R+i*D,R);
 fieldArray[i][j]=0;
 } else {
 if (j<7) {
 with (bubCont.graphics) {
 drawCircle(2*R+j*R*2,R+i*D,R);
 fieldArray[i][j]=0;
 }
 }
 }
 }
 }
}

There is really nothing to explain here as it's just an array initialization just like the
ones you made each time in a tile-based game.

And like all tile-based games, there are a couple of functions that we will need to
deal with the array to manage them.

This is the famous getValue function; you've already met it during the making of
various tile-based games.

private function getValue(row:int,col:int):int {
 if (fieldArray[row]==null) {
 return -1;
 }
 if (fieldArray[row][col]==null) {
 return -1;
 }
 return fieldArray[row][col];
}

Chapter 8

[269]

It will return the value of fieldArray[row][col] or -1 if the value does not exist,
that is row or col have an illegal value.

The second function we are creating is useful to see if a bubble is part of a chain. So
main question is: when is a bubble part of a chain? When it has the same color we are
looking for and it's not already a part of the chain.

Now let's imagine that we store the chain in chainArray array writing in each
element, a string made of the row number followed by a comma followed again
by the column number.

isNewChain function wants the row and the column as arguments to watch, and the
color to check.

private function isNewChain(row:int,col:int,val:uint):Boolean {
 return val == getValue(row,col)&&chainArray.indexOf(row+","+col)==-
1;
}

It will return true if the color to check is the same as the one stored in the field array
at fieldArray[row][col] and there isn't any element in chainArray that contains
the string made by the concatenation of row, comma (,), and col.

With these two functions, it's easy to scan for all matching bubbles in a recursive
way, starting from the position of the last placed bubble.

Follow me during the creation of getChain function, which is the most difficult part
of this chapter:

private function getChain(row:int,col:int):void {
 chainArray.push(row+","+col);
 var odd:uint=row%2;
 var match:uint=fieldArray[row][col];
 for (var i:int=-1; i<=1; i++) {
 for (var j:int=-1; j<=1; j++) {
 if (i!=0||j!=0) {
 if (i==0||j==0||(j==-1&&odd==0)||(j==1&&odd==1)) {
 if (isNewChain(row+i,col+j,match)) {
 getChain(row+i,col+j);
 }
 }
 }
 }
 }
}

Puzzle Bobble

[270]

It wants two arguments representing the row and the column to start scanning,
that obviously will initially be the row and the column of the bubble the player
just fired.

chainArray.push(row+","+col);

The examined bubble itself is part of the chain, so we are inserting it into chainArray
array with push method. Notice the string we are inserting, as explained before.

var odd:uint=row%2;

This is a temporary variable that can take two values: 1 if the row is odd and 0 if
it's even.

varmatch:uint=fieldArray[row][col];

Storing on match variable the value of fieldArray array at the row and column
given by the arguments,

for (var i:int=-1; i<=1; i++) {
 for (var j:int=-1; j<=1; j++) {
 if (i!=0||j!=0) {
 if (i==0||j==0||(j==-1&&odd==0)||(j==1&&odd==1)) { ... }
 }
 }
}

This combination of for loops and if statements scan for all neighbor tiles of the one
at row, col according to this picture:

Note how the neighbors' coordinates vary if the bubbles are on an even or odd row.

Chapter 8

[271]

To detect for bubble chains, is a concept very similar to the flood fill I described
during the making of Minesweeper, only this time I am flood filling the same
colored bubbles from a starting point.

if (isNewChain(row+i,col+j,match)) {
 getChain(row+i,col+j);
}

And for each of the neighbor tiles, if it's part of the chain, then execute getChain
function on this tile too, recursively scanning for its neighbor tiles.

Once the execution of getChain function is over, chainArray will contain the list of
all bubbles that form a chain with the starting bubble, or just the starting bubble itself
if there's no chain.

Now we just have to add some lines at the end of parkBubble function:

private function parkBubble():void {
 ...
 placed_bubble.y=(row*D)+R;
 placed_bubble.gotoAndStop(bubble.currentFrame);
 fieldArray[row][col]=bubble.currentFrame;
 chainArray=new Array();
 getChain(row,col);
 trace("chain: "+chainArray);
 removeChild(bubble);
 fire=false;
 loadBubble();
}

One last effort and we are done:

fieldArray[row][col]=bubble.currentFrame;

Obviously we have to save the current frame of the bubble in fieldArray array, to
store the value of the bubble.

chainArray=new Array();

Initializes chainArray to have an empty, clean array where the chain can be stored.

getChain(row,col);

Calls the core function of this part, getChain.

trace("chain: "+chainArray);

Writes some output to ensure everything worked perfectly.

Puzzle Bobble

[272]

Test the movie and shoot some bubbles. For each bubble, you will see the chain with
that bubble included.

In this case, when you place the third purple bubble, assuming it's the leftmost one,
you will see in the output window:

chain: 3,1,3,2,2,3

Which means we have a chain of three elements: 3,1, 3,2 and 2,3.

Now, we have to remove those bubbles.

Removing the chain
Once we find a chain, bubbles in that chain have to be removed from the game field.

The idea: When we have a chain of three or more bubbles, we have to physically
remove the bubbles and clear the corresponding elements in fieldArray array.

The development: We already have an array with all the bubbles to remove.
Let's start calling bubbles in the same way when we create them. Add this line to
parkBubble function:

private function parkBubble():void {
 var row:uint=Math.floor(bubble.y/D);
 var col:uint;
 if (row%2==0) {
 col=Math.floor(bubble.x/(R*2));
 } else {
 col=Math.floor((bubble.x-R)/(R*2));
 }
 var placed_bubble:bubble_mc = new bubble_mc();
 bubCont.addChild(placed_bubble);
 if (row%2==0) {
 placed_bubble.x=(col*R*2)+R;

Chapter 8

[273]

 } else {
 placed_bubble.x=(col*R*2)+2*R;
 }
 placed_bubble.y=(row*D)+R;
 placed_bubble.gotoAndStop(bubble.currentFrame);
 placed_bubble.name=row+","+col;
 ...
}

Calling the bubble in the same way we inserted the strings into chainArray array
will allow us to easily remove them calling by their names. Add these lines to
parkBubble function:

private function parkBubble():void {
 ...
 getChain(row,col);
 if (chainArray.length>2) {
 for (var i:uint=0; i<chainArray.length; i++) {
 with (bubCont) {
 removeChild(getChildByName(chainArray[i]));
 }
 var coords:Array=chainArray[i].split(",");
 fieldArray[coords[0]][coords[1]]=0;
 }
 }
 removeChild(bubble);
 fire=false;
 loadBubble();
}

Test the movie, and you will be able to remove chained bubbles. What happened?

When we calculated the chain with getChain function, first we need to know if the
chain is made by three or more bubbles, so we are looking at chainArray length:

if (chainArray.length>2) { ... }

If the chain is longer than two (that is, three or more) bubbles, then we have to scan
through chainArray array to see which bubbles we are going to remove:

for (var i:uint=0; i<chainArray.length; i++) { ... }

Now it's time to remove bubbles from the Display List:

with (bubCont) {
 removeChild(getChildByName(chainArray[i]));
}

Puzzle Bobble

[274]

Naming the bubbles in the same way we added strings in chainArray array does
the trick.

Then we only need to update fieldArray elements, turning them to zero.

var coords:Array=chainArray[i].split(",");
fieldArray[coords[0]][coords[1]]=0;

Test the movie and you will be able to remove bubbles when you make a chain.

Let's make things harder: look at this picture and tell me what should you do with
the cyan bubble after red chain has been removed.

Bubbles which remain unchained have to be removed.

Removing unlinked bubbles
The last step to a Puzzle Bobble prototype is removing unchained bubbles.

The idea: Everything turns around the concept of connected bubbles. We can say a
bubble is connected when it's on the highest row or when it's adjacent to at least one
connected bubble. With this in mind, each bubble which is not adjacent to at least
one connected bubble must be removed.

The development: We need a new array to keep track of all connections. Let's create
it as a class level variable and call it connArray. It will be used in a kind of flood fill
for connected bubbles.

private const ROT_SPEED:uint=2;
private const R:uint=18;
private const D:Number=R*Math.sqrt(3);
private const DEG_TO_RAD:Number=0.0174532925;
private const BUBBLE_SPEED:uint=10;
private var cannon:cannon_mc;
private var left:Boolean=false;
private var right:Boolean=false;
private var bubCont:Sprite;

Chapter 8

[275]

private var bubble:bubble_mc;
private var fire:Boolean=false;
private var vx,vy:Number;
private var fieldArray:Array;
private var chainArray:Array;
private var connArray:Array;

Let's start creating a simple function that will tell us if in a given game field position
a bubble exists and it's in connArray.

private function isNewConnection(row:int,col:int):Boolean {
 return getValue(row,col)>0&&connArray.indexOf(row+","+col)==-1;
}

The meaning is easy: we see if we have a bubble with getValue and we look for its
name in connArray array. If both conditions are satisfied, the function returns true.

We are now ready to develop the core function of this section.

private function getConnections(row:int,col:int):void {
 connArray.push(row+","+col);
 var odd:uint=row%2;
 for (var i:int=-1; i<=1; i++) {
 for (var j:int=-1; j<=1; j++) {
 if (i!=0||j!=0) {
 if (i==0||j==0||(j==-1&&odd==0)||(j==1&&odd==1)) {
 if (isNewConnection(row+i,col+j)) {
 if (row+i==0) {
 connArray[0]="connected";
 } else {
 getConnections(row+i,col+j);
 }
 }
 }
 }
 }
 }
}

It looks a bit confused, so I'll explain it line by line.

connArray.push(row+","+col);

First, we insert the bubble itself in the array. It's the basic of all recursive functions.

var odd:uint=row%2;

Puzzle Bobble

[276]

This is the safe old way to have odd equal to 1 if we are working on an odd row, and
equal to zero if we are on an even row.

for (var i:int=-1; i<=1; i++) {
 for (var j:int=-1; j<=1; j++) {
 if (i!=0||j!=0) {
 if (i==0||j==0||(j==-1&&odd==0)||(j==1&&odd==1)) { ... }
 }
 }
}

And this is the combination of for loops and if statements to scan for adjacent
bubbles that you've already met when we looked for bubble chains.

if (isNewConnection(row+i,col+j)) { ... }

This is how we check if the adjacent bubble is a new connection or it's a bubble we
already know is connected with the bubble we are examining. We aren't just looking
for adjacent bubbles, but for adjacent bubbles which are in the highest row, and we
can check for it this way:

if (row+i==0) { ... }

If row+1 is equal to zero, we have an adjacent bubble which is in the highest row,
so the bubble we are examining cannot be unlinked. We will insert a special value in
the first element of connArray array just to let us remember we are dealing with a
linked bubble.

connArray[0]="connected";

You can use anything you want, I've inserted the string connected because I want
the world to know I found a linked bubble. But what happens if there aren't adjacent
bubbles in the highest row?

else {
 getConnections(row+i,col+j);
}

We just call getConnections function recursively to adjacent bubbles. If the
current bubble does not have adjacent bubbles in the highest row, maybe one
of its neighbors has.

We are now able to create a function called removeNotConnected which will scan
the entire game field looking for unconnected bubbles.

private function removeNotConnected():void {
 for (var i:uint=1; i<11; i++) {
 for (var j:uint=0; j<8; j++) {

Chapter 8

[277]

 if (getValue(i,j)>0) {
 connArray=new Array();
 getConnections(i,j);
 if (connArray[0]!="connected") {
 with (bubCont) {
 removeChild(getChildByName(i+"_"+j));
 }
 fieldArray[i][j]=0;
 }
 }
 }
 }
}

Let's see how it works. The couple of for loops scan for the entire game array,
looking for bubbles with getValue function. When we find a bubble (that is,
when getValue function returns a value greater than zero), the core of the
function is executed:

connArray=new Array();
getConnections(i,j);

First, we clear and initialize connArray array, then we populate it with
getConnections function. At this time, the first element of connArray
should be connected.

if (connArray[0]!="connected") { ... }

If it's not connected, we can say we are dealing with an unconnected bubble and we
have to remove it.

with (bubCont) {
 removeChild(getChildByName(i+"_"+j));
}

This is how I am removing the bubble. Again, I used with for a layout purpose, it's
not mandatory (and it's quite a malpractice to tell the truth). Now the field itself
needs to be cleared:

fieldArray[i][j]=0;

Puzzle Bobble

[278]

Finally, if we have a chain longer than two bubbles, that is we are about to remove
some bubbles from the game field, we have to call removeNotConnected function to
clear the game field from unconnected, floating bubbles.

private function parkBubble():void {
 ...
 if (chainArray.length>2) {
 for (var i:uint=0; i<chainArray.length; i++) {
 with (bubCont) {
 removeChild(getChildByName(chainArray[i]));
 }
 var coords:Array=chainArray[i].split("_");
 fieldArray[coords[0]][coords[1]]=0;
 }
 removeNotConnected();
 }
 removeChild(bubble);
 fire=false;
 loadBubble();
}

Test the movie and create a chain which leaves some unconnected bubbles, like the
white one in the picture:

Once red bubbles have been removed, the white unconnected bubble is removed too.

And that's your Puzzle Bobble prototype ready to be played.

Chapter 8

[279]

Summary
Puzzle Bobble uses hexagonal tiles rather than square tiles, and as you learned
during the making of this prototype, this requires some extra coding when you
are looking for adjacent cells or when you are placing actors in your game field.
Anyway, using hexagonal tiles opens your game design to a wide range of puzzle
and strategic games.

Where to go now
If you noticed the whole game is played on the left edge of the stage, it's because I
would like you to develop a multiplayer game, with the split screen technique. This
means player one plays on the left of the stage, and player two plays on the right.

The way I showed you to handle key presses allows you to have another player
controlling the cannon with a different set of keys, let's say A and S to rotate the
cannon and W to fire.

BallBalance
BallBalance is not a classic in videogames history, it's just a Flash game I made and
got sponsored by Kongregate.

You can play it at http://www.kongregate.com/games/triqui/ballbalance

Drop spheres on the balance. Every sphere has a set weight so drop them wisely.
Spheres affect the balance according to their distance from the fulcrum. Match three
or more spheres of the same color horizontally or vertically (and diagonally in this
prototype, although in the original game you can't) to make them disappear. Let the
balance hit the ground and it is game over.

It's a quite simple game I want you to make. During the making of this game you
won't see new techniques or methods, but you'll improve your skills anyway because
you'll see the making of an original game from scratch. Moreover, I will be giving
you only a brief explanation of the code, as you should already have the basics to
replicate this game.

Also, the way I will explain the making of this game is a bit different than what you
are used to seeing in the book. There isn't any "the idea" and "the development"
paragraphs. I am only creating the game in the same way I created it three years ago.
Obviously this approach frequently leads to errors and programming malpractice,
so you should always make a good game design as described throughout this book,
anyway sometimes it's good to let fingers run on the keyboard and just experiment.

On your marks. Ready. Go!

BallBalance

[282]

Creating files and assets
Create a new file (File | New) then from New Document window select
Actionscript 3.0. Set its properties as width to 640px, height to 480px, background
color to #000033 (a dark blue) and frame rate to 30. Also define the Document Class
as Main and save the file as ballbalance.fla.

There are three actors in this game: the fulcrum, the balance, and the spheres. We
will draw the spheres with six different colors in a Movie Clip called ball_mc.

Spheres have a radius of 25 pixels and the registration point in their center. Also, a
dynamic text field called weight, capable of hosting numbers from 1 to 5, is placed in
the middle of the sphere.

The fulcrum is a 60x50 triangle with the registration point in the middle of its base,
called fulcrum_mc.

The balance, called balance_mc, is a grid made by six rows by eight columns. Each
tile has a 50 pixel side, and its registration point is in the middle of its base, between
the fourth and the fifth column.

Create these three symbols and make them exportable for ActionScript, as usual.

Here are the actors I drew:

Let's start coding.

Chapter 9

[283]

Adding the balance
Let's prepare the gamefield and initialize the game array. We will place the fulcrum
in the bottom of the gamefield, horizontally centered, and the balance over the
fulcrum. Then we'll create a 6x8 array filled with zeros.

Without closing ballbalance.fla, create a new file and from New Document
window select ActionScript 3.0 Class. Save this file as Main.as in the same path
you saved ballbalance.fla. This is the content of Main.as:

package {
 import flash.display.Sprite;
 import flash.events.Event;
 import flash.events.MouseEvent;
 public class Main extends Sprite {
 private var balance:balance_mc=new balance_mc();
 private var gameArray:Array;
 public function Main() {
 prepareArray();
 buildBalance();
 }
 private function buildBalance():void {
 var fulcrum:fulcrum_mc = new fulcrum_mc();
 addChild(fulcrum);
 fulcrum.x=320;
 fulcrum.y=480;
 addChild(balance);
 balance.x=320;
 balance.y=430;
 }
 private function prepareArray():void {
 gameArray = new Array();
 for (var i:uint=0; i<6; i++) {
 gameArray[i]=new Array();
 for (var j:uint=0; j<8; j++) {
 gameArray[i].push(0);
 }
 }
 }
 }
}

There's nothing to say about prepareArray function as it fills gameArray with zeros
just as you are used to seeing, while buildBalance function places the fulcrum on
the ground (the very bottom of the stage) and the balance over it.

BallBalance

[284]

Unlike previous games, the first row, the one with index zero, isn't the topmost but
the bottommost. Keep this in mind during the making of this game.

Test the movie and you will see your balance ready to be filled with colored spheres.

Now, let's make the player choose where to drop spheres.

Choosing where to drop spheres
The player has to be able to choose where to drop spheres with the mouse. Moving
the mouse over a column will make the sphere place at the very top of the column.
This way the player will select the column by placing a sphere over it.

This time we'll try a different approach to game mechanics. Rather than having a
different set of functions to be called according to what's happening on stage, we'll
manage the whole game in the function triggered by an ENTER_FRAME event. To let us
know what's going on in our game, we'll use a variable called gameStatus that will
take various values according to the state of the game. Let's add three new class level
variables to Main class:

private var balance:balance_mc=new balance_mc();
private var gameArray:Array;
private var ball:ball_mc;
private var selCol:int;
private var gameStatus:String="placing";

ball will be used to create a ball_mc instance, to add a sphere to the game.

selCol is the column the player is going to select, that is the column where he will
drop the sphere.

Chapter 9

[285]

gameStatus is the state of the game. At the beginning its value is placing because
we are placing a sphere. Note how I am using a string to describe the state. It would
have been more correct if I'd used an integer to represent the various states of the
game, with a set of constants to give them a meaningful name, this way:

private const PLACING:int=1;
private var gameStatus:int=PLACING;

Anyway, I did not want to create a lot of constants so I am using this faster and dirty
way. You are free to follow my example or do the nice programmer and create a set
of constants, one for every state of the game.

Since gameStatus comes into play every time an ENTER_FRAME event is triggered, we
need to add the listener in Main constructor:

public function Main() {
 prepareArray();
 buildBalance();
 addEventListener(Event.ENTER_FRAME,onEnterFrm);
}

Now onEnterFrm will be called at every frame. Let's see how it's made:

private function onEnterFrm(e:Event):void {
switch (gameStatus) {
 case "placing" :
 addBall();
 gameStatus="moving";
 break;
 case "moving" :
 selCol=Math.floor((balance.mouseX+200)/50);
 if (selCol<0) {
 selCol=0;
 }
 if (selCol>7) {
 selCol=7;
 }
 ball.x=-175+selCol*50;
 break;
 }
}

BallBalance

[286]

The whole function is managed by the switch statement acting on gameStatus
variable. As you can see, there are two cases: when gameStatus contains the string
placing and when it contains moving. Again, feel free to define a constant called
MOVING, assigning it a value of 2 (or anything you want, but different than 1 that
should be PLACING value) and manage the switch using constants rather
than strings.

Since selCol can never be both less than zero and greater than 7, this block

if (selCol<0) {
 selCol=0;
}
if (selCol>7) {
 selCol=7;
}

Could be rewritten this way:

if (selCol<0) {
 selCol=0;
}
else if (selCol>7) {
 selCol=7;
}

But as said we are just prototyping a playable concept, so we won't bother that much
about being correct at scripting.

Anyway, let's see what happens when we enter in the placing case, which is our
starting state. In this case, addBall function is called to add the sphere on the stage.
This is addBall function:

private function addBall():void {
 ball=new ball_mc();
 balance.addChild(ball);
 ball.y=-325;
 ball.gotoAndStop(Math.ceil(Math.random()*6));
 ball.weight.text=Math.ceil(Math.random()*5).toString();
}

The function constructs and adds a sphere on the Display List as a child of balance
DisplayObject, sets it at the very top of it, setting its y property at -325 (again, use
a constant if you want), then a random color and a random weight are chosen. The
random color is shown stopping the sphere's timeline to a frame between 1 and 6,
while the weight is shown writing a number between 1 and 5 in the weight dynamic
text of the sphere.

Chapter 9

[287]

I only want you to note how I am using ceil method to return the ceiling of the
expression. These two lines:

ball.gotoAndStop(Math.ceil(Math.random()*6));
ball.gotoAndStop(Math.floor(Math.random()*6)+1);

Will show the same frame, assuming the random number is the same.

The last thing I want you to note is the y property at -325. Is there a meaning behind
this number or could it be 312 or 491? I've chosen a value which allowed me to place
the sphere as if it were on a row above the balance, and which can be divided by 25,
the sphere's radius. I'll use this feature to add smooth animations to falling spheres,
later in this chapter.

Back to our switch statement, after adding the sphere on the stage with addBall,
we change gameStatus giving it the value of moving. This means next time we'll
enter the switch statement; we'll execute the code in moving case. I said "next time"
because the break at the end of placing case prevents us from executing anything
else inside the switch statement.

What happens in moving case?

selCol=Math.floor((balance.mouseX+200)/50);

This line is the core of the block. We detect the x mouse position inside balance
DisplayObject and according to its registration point and column's width we know
we are on the first column (column 0) when the mouse x position ranges from -200 to
-151, on the second column (column 1) when the mouse x position ranges from -150
to -101, and so on. This value is assigned to selCol variable, and it represents the
column the player is choosing to drop the sphere. Then the value is sanitized to let us
have only values from 0 to 7, which represent legal column values, and finally with:

ball.x=-175+selCol*50;

The sphere is exactly placed over the column selected with the mouse.

You may ask why we are detecting x mouse position inside balance DisplayObject
and not directly on the stage: that's because between the balance and the stage itself
there is a different coordinate system, especially when the balance is rotated. That's
why we are choosing the balance itself as a reference for x mouse position.

BallBalance

[288]

Test the movie, and you will see a random sphere with a random weight you can
move with the mouse over the balance.

Now the player is able to select a column. Let's make him drop the sphere.

Dropping the spheres
The player will be able to drop the spheres by clicking with the mouse on the column
he/she wants to drop a sphere. Once a sphere has been dropped, it will fall down
until it touches the floor of the balance or another sphere.

We need another class level variable to store the position of the row where the sphere
will drop, just like we are storing the position of the column with selCol. Add the
new variable, called selRow.

private var balance:balance_mc=new balance_mc();
private var gameArray:Array;
private var ball:ball_mc;
private var selCol:int;
private var selRow:int;
private var gameStatus:String="placing";

Do you see something strange in these variable declarations? selCol and selRow
have been defined as integers, but they will never take a value less than zero, so they
should have been defined as unsigned integers, right? It's true, but Flash handles
unsigned integers a bit slower than integers. So if you are looking for performances,
always prefer integers over unsigned integers. It's not the case in our game that
won’t benefit from using integers in place of unsigned integers as it's not that CPU
expensive, but keep this information in mind.

Chapter 9

[289]

Back to our game, we said the player will drop the spheres with a mouse click, so we
are going to add a listener in Main constructor:

public function Main() {
 prepareArray();
 buildBalance();
 addEventListener(Event.ENTER_FRAME,onEnterFrm);
 stage.addEventListener(MouseEvent.CLICK,onClick);
}

The player can click anywhere around the screen, that's why the listener has been
added on the stage. Once the click has been detected, onClick function comes
into play.

private function onClick(e:MouseEvent):void {
 if (gameStatus=="moving"&&gameArray[5][selCol]==0) {
 gameStatus="falling";
 }
}

Let's see when a sphere can be dropped in a column. There are two conditions that
must be satisfied:

The player is moving the sphere, choosing a column
The column isn't already fully occupied by previously dropped spheres

Both conditions are included in the if statement. gameStatus=="moving" means
the player is moving the ball above the balance, choosing where to drop it, and
gameArray[5][selCol]==0 means there is at least one free spot in the selCol
column.

If a sphere can be dropped, then gameStatus takes the value falling.

What happens when the sphere is falling? Let's add this new case to the switch
statement in onEnterFrm function:

case "falling" :
 ball.y+=12.5;
 if ((ball.y-25)%50==0) {
 selRow = -1*(ball.y+25)/50;
 if (selRow==0||gameArray[selRow-1][selCol]!=0) {
 var placedBall:ball_mc = new ball_mc();
 balance.addChild(placedBall);
 placedBall.x=ball.x;
 placedBall.y=ball.y;
 placedBall.gotoAndStop(ball.currentFrame);

1.
2.

BallBalance

[290]

 placedBall.weight.text=ball.weight.text;
 placedBall.name=selRow+"_"+selCol;
 gameArray[selRow][selCol]=placedBall.currentFrame;
 balance.removeChild(ball);
 gameStatus="checking";
 }
 }
 break;

Making spheres fall is the key of the game, so I am explaining it line by line:

ball.y+=12.5;

Moves the sphere down by 12.5 pixels, which is a value that divides its initial
position, -325. Moving the sphere by a non-integer amount of pixels can seem
a nonsense as in the screen there aren't half pixels, but we'll leave it to Flash to
interpolate and approximate pixel movements, we just want to move the sphere by
any value that can divide 25, which is the radius of the sphere. The smaller the value,
the slower the animation.

if ((ball.y-25)%50==0) { ... }

Acting on y property and keeping in mind the sphere's registration point which is in
the middle, it checks if the sphere is perfectly aligned to a row. This means we aren't
in a frame that merely performs a smooth movement but the sphere reached a new
row. It's time to see if it should stop or continue falling.

selRow = -1*(ball.y+25)/50;

And this is how the current row is determined. It's basically the distance between
the bottom of the ball and the vertical registration point of the balance, divided by 50
which is the tile's size.

if (selRow==0||gameArray[selRow-1][selCol]!=0) { ... }

This if statement checks whether the sphere should stop falling or not. The sphere
will stop if at least one of these two conditions is satisfied:

The sphere is on the ground of the balance that is at row zero.
The sphere is immediately above another sphere.

Once we enter the if statement, it means the sphere should stop falling.

var placedBall:ball_mc = new ball_mc();

1.
2.

Chapter 9

[291]

At this time we create a new ball_mc instance to represent the sphere that we will
swap with the falling one to make it lie in its position.

balance.addChild(placedBall);

The new sphere is now added to Display List as a child of balance DisplayObject.

placedBall.x=ball.x;
placedBall.y=ball.y;
placedBall.gotoAndStop(ball.currentFrame);
placedBall.weight.text=ball.weight.text;

These lines make the new placedBall sphere look exactly the same as the
falling sphere.

placedBall.name=selRow+"_"+selCol;

Gives a unique name to the sphere, according to its position. As you've seen during
this book, this will help us to locate the sphere when it's time to remove it.

gameArray[selRow][selCol]=placedBall.currentFrame;

gameArray now is updated, placing the sphere color (actually the frame it's showing)
in the element corresponding to the current row and column.

balance.removeChild(ball);

At this time we don't need the falling sphere anymore, and we remove it from
Display List.

gameStatus="checking";

Everything seems to be ready for us to set gameStatus to placing and add a
new sphere to the game, but before we must check for sphere chains. So we set
gameStatus to checking although we haven't written any code for a checking
case. Don't worry as the switch will simply do nothing once the sphere touches
the ground.

Test the movie and drop a sphere.

BallBalance

[292]

You will see the sphere falling down with a smooth animation, then the game stops.
We must now check for chains.

Stacking spheres
When the player forms a chain of three or more spheres of the same color, they must
disappear. Throughout this book you learned how to manage adjacent tiles in tile-
based games a lot of times, in a lot of different ways. I'm showing you another way,
just to make you understand how the same things can be made in a lot of ways when
you know a language.

We'll start adding a new class level variable called chainArray that is the array that
will contain the chains.

private var balance:balance_mc=new balance_mc();
private var gameArray:Array;
private var chainArray:Array;
private var ball:ball_mc;
private var selCol:int;
private var selRow:int;
private var gameStatus:String="placing";

With this new variable, we can code the checking case to add to the switch
statement in onEnterFrm function:

case "checking" :
 chainArray = new Array();
 gameStatus="placing";
 for (var i:uint=0; i<6; i++) {
 for (var j:uint=0; j<8; j++) {
 if (gameArray[i][j]!=0) {
 checkForChains(i,j);
 }
 }
 }

break;

The first thing the block of code does is intialize chainArray. Now the array is
empty and clean, and we'll fill it with sphere chains, if any.

At the moment we are setting gameStatus to placing again because this is the state
we are going to use if we don't find any chain.

Chapter 9

[293]

The couple of for loops scan through gameArray elements looking for a sphere,
that is, an element whose value is different than zero. For every gameArray element
different than zero, checkForChains function is executed, passing i (the row) and
j (the column) as arguments. There's room for optimization in these two loops, as
we know for sure unmoved spheres cannot be part of a chain, and at this time only
the sphere we just dropped can be part of it. Anyway, I am leaving this optimization
to you as I need a quick way to scan for chains when more than one sphere will be
falling, as you will discover later in this chapter.

Before talking about checkForChains, let's create the little function we made every
time we needed to return an array value only if it exists or -1 otherwise. This time the
function is called checkBall but it's just a copy/paste of the same function we found
in every tile-based game built throughout this book.

private function checkBall(row:int,col:int):int {
 if (gameArray[row]==null) {
 return -1;
 }
 if (gameArray[row][col]==null) {
 return -1;
 }
 return gameArray[row][col];
}

We are almost ready to code checkForChains function, which checks for
successful chains, but we still need another couple of functions. Chains can be made
horizontally, vertically, or in both diagonals, and each of the four possible directions
will have a dedicated function that will check for a chain starting from a specific
sphere. The concept isn't that different from the one we developed during the
making of Connect Four.

Let's see the function to check for horizontal chains:

private function checkHorizontal(row:uint,col:uint):void {
 var current:uint=gameArray[row][col];
 var streak:Array=[row.toString()+"_"+col.toString()];
 var tmpCol:int=col;
 while (checkBall(row,tmpCol-1)==current) {
 streak.push(row.toString()+"_"+(tmpCol-1).toString());
 tmpCol--;
 }
 tmpCol=col;
 while (checkBall(row,tmpCol+1)==current) {
 streak.push(row.toString()+"_"+(tmpCol+1).toString());
 tmpCol++;

BallBalance

[294]

 }
 if (streak.length>2) {
 gameStatus="removing";
 chainArray=chainArray.concat(streak);
 }
}

checkHorizontal function will check for a horizontal chain starting from a sphere
located at a specific row and column, as you can see looking at its arguments.

Let's see how it works:

var current:uint=gameArray[row][col];

Saves in a variable called current the color of the current sphere.

var streak:Array=[row.toString()+"_"+col.toString()];

Creates a new array called streak that contains the names of the spheres in the
chain. Obviously the checked sphere itself is a part of the chain, so streak array
will initially contain the name of the checked sphere.

var tmpCol:int=col;

Stores col argument value into a temporary variable called tmpCol. We have to play
a bit with this value, so using a temporary variable prevents the original value from
being somehow overwritten and getting lost.

while (checkBall(row,tmpCol-1)==current) { ... }

This while loop scans the row to the left and continues its iteration as long as the
colors of the spheres it found are the same as the current sphere we're checking.

streak.push(row.toString()+"_"+(tmpCol-1).toString());

If the sphere has the same color, then we need to push in streak array its name, as
it's a part of the chain.

tmpCol--;

Finally tmpCol is decreased to look one sphere further on the left.

tmpCol=col;
while (checkBall(row,tmpCol+1)==current) {
 streak.push(row.toString()+"_"+(tmpCol+1).toString());
 tmpCol++;
}

Chapter 9

[295]

Once we are done with the checking on the left side, we must check for spheres
of the same color on the right side. First, we reset tmpCol value, and then another
while loop will scan the spheres on the right of the checked sphere in the same way
we just did on the left.

if (streak.length>2) { ... }

At the end of both while loops, after we finished scanning on the left and on the
right of the initial sphere, streak array will contain the names of all the spheres
in the chain. Since a chain must be made by at least three spheres, we are checking
streak's length to be greater than 2.

gameStatus="removing";
chainArray=chainArray.concat(streak);

In this case, gameStatus takes removing value as we found a chain and we must
remove it. At the same time, streak elements are added to chainArray array with
concat method, which concatenates the elements specified in the parameter with the
elements in the caller array.

In the same way we just managed horizontal chains, checkVertical looks for
vertical chains, eventually inserting the names of the spheres forming part of the
chain in chainArray array. This time the argument that needs to be saved is row,
copied in tmpRow variable.

private function checkVertical(row:uint,col:uint):void {
 var current:uint=gameArray[row][col];
 var streak:Array=[row.toString()+"_"+col.toString()];
 var tmpRow:int=row;
 while (checkBall(tmpRow-1,col)==current) {
 streak.push((tmpRow-1).toString()+"_"+col.toString());
 tmpRow--;
 }
 tmpRow=row;
 while (checkBall(tmpRow+1,col)==current) {
 streak.push((tmpRow+1).toString()+"_"+col.toString());
 tmpRow++;
 }
 if (streak.length>2) {
 gameStatus="removing";
 chainArray=chainArray.concat(streak);
 }
}

BallBalance

[296]

Diagonals' chains too are dealt in the same way, with checkDiagonal and
checkDiagnoal2 functions. This is checkDiagonal:

private function checkDiagonal(row:uint,col:uint):void {
 var tmpStr:String;
 var current:uint=gameArray[row][col];
 var streak:Array=[row.toString()+"_"+col.toString()];
 var tmpRow:int=row;
 var tmpCol:int=col;
 while (checkBall(tmpRow-1,tmpCol-1)==current) {
 tmpStr=(tmpRow-1).toString()+"_"+(tmpCol-1).toString()
 streak.push(tmpStr);
 tmpRow--;
 tmpCol--;
 }
 tmpCol=col;
 tmpRow=row;
 while (checkBall(tmpRow+1,tmpCol+1)==current) {
 tmpStr=(tmpRow+1).toString()+"_"+(tmpCol+1).toString()
 streak.push(tmpStr);
 tmpRow++;
 tmpCol++;
 }
 if (streak.length>2) {
 gameStatus="removing";
 chainArray=chainArray.concat(streak);
 }
}

It's exactly the same concept, except we need to save both the row and the column in
temporary variables. checkDiagonal2 follows the same concept.

private function checkDiagonal2(row:uint,col:uint):void {
 var tmpStr:String;
 var current:uint=gameArray[row][col];
 var streak:Array=[row.toString()+"_"+col.toString()];
 var tmpRow:int=row;
 var tmpCol:int=col;
 while (checkBall(tmpRow+1,tmpCol-1)==current) {
 tmpStr=(tmpRow+1).toString()+"_"+(tmpCol-1).toString();
 streak.push(tmpStr);
 tmpRow++;
 tmpCol--;
 }
 tmpCol=col;

Chapter 9

[297]

 tmpRow=row;
 while (checkBall(tmpRow-1,tmpCol+1)==current) {
 tmpStr=(tmpRow-1).toString()+"_"+(tmpCol+1).toString();
 streak.push(tmpStr);
 tmpRow--;
 tmpCol++;
 }
 if (streak.length>2) {
 gameStatus="removing";
 chainArray=chainArray.concat(streak);
 }
}

Calling these four functions will fill chainArray array with every sphere that
forms a chain with the sphere we just dropped. Let's see how we can use them
in checkForChains function:

private function checkForChains(row:uint,col:uint):void {
 checkHorizontal(row,col);
 checkVertical(row,col);
 checkDiagonal(row,col);
 checkDiagonal2(row,col);
 if (gameStatus=="removing") {
 for (var i:uint = 0; i <chainArray.length - 1; i++) {
 for (var j:uint = i + 1; j <chainArray.length; j++){
 if (chainArray[i]===chainArray[j]) {
 chainArray.splice(j, 1);
 }
 }
 }
 }
}

First, I am calling all the four functions to find all the chains. Then, if gameStatus is
removing, this means we found at least a chain, since the only lines which will set
gameStatus to removing are executed if a horizontal, vertical or diagonal chain has
been found. In this case we have to remove duplicate elements in chainArray array.

How can there be duplicate elements? It's simple; just think about dropping a sphere
which forms both a horizontal and a vertical chain: the sphere itself will be placed
twice in chainArray array, the first time when we check for horizontal chains, and
the second time when we check for vertical chains.

There's nothing new in these two for loops. Just remember === operator means
"strictly equal to", that is the two values must be absolutely equal.

BallBalance

[298]

Test the game and you will be able to drop and stack spheres.

Unfortunately nothing happens when you make a chain, since the code to execute
when gameStatus is equal to removing has yet to be written.

Removing spheres
What happens when gameStatus is removing? Here it is another case to add to our
big switch statement in onEnterFrm function:

case "removing" :
 for (i=0; i<chainArray.length; i++) {
 with (balance) {
 getChildByName(chainArray[i]).alpha-=0.2;
 if (getChildByName(chainArray[i]).alpha<0) {
 removeChild(getChildByName(chainArray[i]));
 var parts:Array=chainArray[i].split("_");
 gameArray[parts[0]][parts[1]]=0;
 gameStatus="adjusting";
 }
 }
 }
 break;

The meaning of this code should be quite clear: the for loop scans for all elements in
chainArray array, which are the names of the spheres to remove.

Every child of balance DisplayObject with the name corresponding to each element
in chainArray array will have its alpha property decreased by 0.2, and as result the
player will see spheres forming the chain fade away.

Chapter 9

[299]

Once they are completely invisible, the spheres are removed from Display List,
gameArray corresponding element is set to zero (empty spot) and gameState is
set to adjusting.

Don't worry about this new game state at the moment, and test the movie. You will
be able to create a chain and watch it disappear.

As you can see from this picture, once a chain is made, spheres disappear. But it's not
over yet, as floating spheres should fall down to fill the empty gaps.

Adjusting floating spheres
Floating spheres must be treated like falling spheres. We have to make them fall and
check if they form a chain. Let's see the last case to add to the switch statement in
onEnterFrm function:

case "adjusting" :
 var adjusted:Boolean=false;
 for (i=1; i<6; i++) {
 for (j=0; j<8; j++) {
 if (gameArray[i][j]!=0&&gameArray[i-1][j]==0) {

BallBalance

[300]

 adjusted=true;
 with (balance) {
 getChildByName(i+"_"+j).y+=12.5;
 if((getChildByName(i+"_"+j).y-25)%50==0){
 getChildByName(i+"_"+j).name=(i-1)+"_"+j;
 gameArray[i-1][j]=gameArray[i][j];
 gameArray[i][j]=0;
 }
 }
 }
 }
 }
 if (! adjusted) {
 gameStatus="checking";
 }
 break;

First, I need a Boolean variable called adjusted to tell the script if all spheres have
been adjusted. It starts with false because we assume there is still at least one
sphere to adjust.

The couple of for loops scans for the entire gameArray array except the lowest row
(look how i variable starts with 1), then the key of the process is this if statement:

if (gameArray[i][j]!=0&&gameArray[i-1][j]==0) { ... }

This if statement checks if there is a sphere (gameArray[i][j]) over an empty hole
(gameArray[i-1][j]==0).

In this case we set adjusted to true because we found a sphere to adjust, then we
move down the sphere to be adjusted by 12.5 pixels to make a smooth animation
in the same way we did when we managed a falling sphere, then with this
if statement:

if((getChildByName(i+"_"+j).y-25)%50==0){ ... }

We check if the sphere is still performing the animation or it reached the place
below its starting position, again just as we've already done when dealing with
a falling sphere.

getChildByName(i+"_"+j).name=(i-1)+"_"+j;
gameArray[i-1][j]=gameArray[i][j];
gameArray[i][j]=0;

In this case we update sphere's name as it changed its position, and gameArray too as
we have to place a hole (zero) in the starting position of the sphere, and the color of
the sphere (gameArray[i][j]) where the sphere fell.

Chapter 9

[301]

Finally, if we did not adjust any sphere, we set gameStatus to checking to see if
adjusted spheres formed a chain.

Test the movie, and play the game. You will be able to make chains and combos.

In the previous picture, the orange sphere forms a chain, all orange spheres in the
chain are removed, then the purple and the cyan floating spheres fall down, and
when the cyan sphere forms another chain, the new chain is removed and only when
there aren't more chains to remove or spheres to adjust, the player is able to place
another sphere. All of this with smooth animations.

At this time, the prototype is completed as you can play with all features, but the
balance still does not move.

BallBalance

[302]

Moving the balance
At this time we should feature a fulcrum simulation. There's some physics concepts
you should know, try to google for "fulcrum" to know more information.

We aren't looking for a complete simulation of a fulcrum, so multiplying the weight
of the spheres by the distance, in columns, from the center will be enough. I won't
care about row position in this script; anyway you are free to do it if you think this
can improve the quality of the game.

At the end of onEnterFrm function after the switch statement add this code:

private function onEnterFrm(e:Event):void {
 switch (gameStatus) {
 ...
 }
 var weight:int=0;
 for (i=0; i<6; i++) {
 for (j=0; j<8; j++) {
 if (gameArray[i][j]!=0) {
 var tmpBall:ball_mc;
 tmpBall=balance.getChildByName(i+"_"+j) as ball_mc;
 var tmpWeight:uint=int(tmpBall.weight.text);
 if (j<=3) {
 weight+=(j-4)*tmpWeight;
 }
 else {
 weight+=(j-3)*tmpWeight;
 }
 }
 }
 }
 balance.rotation+=weight/100;
}

Then test the movie and you will be playing on a moving balance. Try not to make it
rotate that much while you make chains.

Chapter 9

[303]

Let's take a look at the code:

var weight:int=0;

A new variable called weight is created, with its initial value at zero. Then the whole
gameArray array is scanned, and for every sphere found, we check for its weight
looking at its weight dynamic text field and save its content in a variable called
tmpWeight.

Then, this if then else statement:

if (j<=3) {
 weight+=(j-4)*tmpWeight;
} else {
 weight+=(j-3)*tmpWeight;
}

Ensures the weight is multiplied by -4 if we are on the leftmost column (column
zero), then -3, -2 and -1 for the second, third, and fourth columns, then by 1, 2, 3,
and 4 respectively for the fifth to eighth columns.

Finally balance rotation is updated according to the weight.

balance.rotation+=weight/100;

The weight is divided by 100 to keep the game playable, or rotation will be
too strong.

And your BallBalance prototype is completed.

BallBalance

[304]

Summary
What can I say! During the writing of this book, I've taken you by the hand through
the creation of some of the most popular games in videogames history, and although
I don't know you, I'm already missing you. Tomorrow I won't be writing anything
you can find in this book, and I'm feeling a bit like when the summer is over. I
dedicated six months of my life to this book, so I am taking it with some kind of
sadness. Anyway, I just hope you enjoyed following me throughout this book.

See you around.

Where to go now
There are two things you should do: first, managing the "next" feature as in the
making of Tetris, then you could try to manage the "game over" status, when the
balance rotates more than a certain amount of degrees (I would suggest 15) or
when it's completely filled by spheres.

Where to Go Now
Once you code a game, your work isn't over. Game developing starts before you
write the game itself and ends after you have added the last line of code.

I want you to have this list of links that you can't miss if you want to be a respected
game developer:

http://www.flashmindmeld.com/: 60 tips from 60 experts about what makes or
breaks a successful Flash game.

http://www.mochimedia.com/: the most complete all in one service for Flash game
developers, featuring among other things monetizing with advertising and social
features.

http://www.newgrounds.com/: one of the most important Flash game portals. Make
your game get a good score in this portal, and you can consider it a success.

http://www.kongregate.com/: another important Flash game portal, with a built-in
social network. Add badges and rewards to your game and you'll get a lot of plays in
this site, which also shares revenues with developers.

http://armorgames.com/: one of the first and most important Flash game portals
which also sponsors the best games around the web. Catch their attention and you
can be sure your game rocks.

http://www.box2dflash.org/: free open source rigid body physics engine for
Flash.

http://www.flare3d.com/: commercial 3D engine for Flash, the most impressive
among its competitors.

http://www.flashgamelicense.com/: community which connects developers with
sponsors, to let you make money with your Flash game.

Where to Go Now

[306]

http://flashgamedistribution.com/: get your game distributed in every known
portal in just a few clicks.

http://www.kindisoft.com/: software house that developed secureSWF, the best
tool to protect your SWF files against decompilers.

http://playtomic.com/: the most complete and powerful analytics system for your
Flash game. Endless possibilities of tracking what's happening in your game and
who's playing it.

And finally, my blog, http://www.emanueleferonato.com/: here you will find
daily posts about indie game developing and related topics.

Index
Symbols
=== operator 297

A
addBall function 286
animations

discs 104, 105
displaying 79, 80
steps 105, 106

Armor Games
URL 10

array-based game, snake
versus movie-clip based game 117

Astro-PANIC!
bullet movement, managing 191, 192
creating 186
current score, managing 207, 208
data, saving on local computer 209-211
enemies, adding 193, 194
enemies, managing 194-200
enemy, killing 200, 201
enemy’s death, animating 203-205
enemy killing, benefits 201-203
game design, defining 185
Glow filter, adding 188, 189
graphics, redrawing 186
high score, managing 207, 208
levels, moving to 205, 206
spaceship, adding 187
spaceship, controlling 187
spaceship, firing 189, 190

B
background color

setting 9
BallBalance

about 281
assets, creating 282
balance, moving 302, 303
drop spheres location, choosing 284-288
files, creating 282
floating spheres, adjusting 299-301
game field, preparing 283, 284
spheres, dropping 288-291
spheres, removing 298, 299
spheres, stacking 292-297

beginFill method 151
bejeweled game

about 213
combos, dealing with 239, 240
documents, creating 214
gem, selecting 221, 223
gem for removal, selecting 231-233
gems, animating to fall 235-238
gems, placing 215-221
gems, removing 233, 234
gems, swapping 226-230
gems swap, preparing 223-226
hints, giving 241-243
new gems, adding 238
objects, creating 214

block comment 15
board

adding 81, 82
placing, on stage 82-84

[308]

C
canFit function 170, 180
cell value

determining 96, 97
checkForChains function 293, 297
checkForLines function 175
checkForVictory function 103
checkHorizontal function 294
class level variable 29
collide function 266
computerMove function 108
concentration

about 7
background color, setting 9
cheating techniques, preventing 37, 38
checking, for matching tiles 29-33
educational content, adding 39-41
fine-tuning 39
frame rate, setting 9
game design, defining 8
stage size, setting 9
tiles, creating 15
tiles, picking 26
tiles, placing on stage 22
tiles, shuffling 18

Connect Four
about 77
board, adding 81
board, placing on stage 82-84
cell value, determining 96, 97
classes, creating 84-86
code, splitting 80
CPU power, unleashing 108, 109
defensive play 109-112
disc, adding on stage 98, 99
disc, moving 89-93
disc, placing 86-89, 95, 96
discs, animating 104-106
game design, defining 78
game field 78
game rules, applying 93, 94
opponent player, CPU 107, 108
possible columns, checking out 94, 95
smooth animation, displaying 79
starting with 97
victory, determining 100-103

contents, Minesweeper
displaying 63, 64

currentCount property 71
currentFrame property 70
currentRotation 157

D
die function 143, 211
digits

adding 50, 52
disc

adding, on stage 98-100
moving 89-93
placing 86-89

disc_movieclip function 98
Display List 25
Display Object 25
drawCircle method 251
drawNext function 182
drawRect method 151
drawTetromino function 158, 168
dropDisc function 108

E
empty field

creating 44
endFill method 151
ENTER_FRAME event 285
enter_frame function 188

F
firstFreeRow function 111
Flash.filters.GlowFilter class 188
floodFill function 66
frame rate

setting 9
function level variable 29

G
game

Astro-PANIC! 185
BallBalance 281
bejeweled 213
concentration 7

[309]

Connect Four 77
Minesweeper 43
Puzzle Booble 245
Tetris 147

game design, Astro-PANIC!
designing, rules 185, 186

game design, concentration
decisions 9
defining 8, 9

game design, Connect Four
characteristics 78
defining 78

game design, Minesweeper
defining 44

game design, snake
defining 116, 117

generateField function 152
generateTetromino function 178, 179
getChain function 273
getChildAt method 127, 135
getChildByName method 174
getConnections function 276
getObjectsUnderPoint method 136, 138
getValue function 277

H
hierarchy, Display List

displaying, as tree 60
object, types 59

I
indexOf method 31, 99
initTetrominoes function 155
instance variable 29
is_up function 125

J
justEaten varibale 139

K
killEnemy function 201
Kongregate

URL 10

L
landTetromino function 173, 178
lineStyle method 150, 158
loadBubble function 263
local variable 29

M
Main function 130, 181
manageEnemy function 197
manhattan_dist function 134
matching tiles, picking up

actions, viewing 33-37
features, adding 29

Math.floor()method 18, 21
Math.max method 112
Math.random() method 21
method 18

splice 297
mines

adding 47-49
Minesweeper

about 43
adjacent empty tiles, auto showing 65-67
design, defining 44
digits, adding 50-52
empty field, creating 44-47
No sudden death issue 72-74
optimization, requirements 53-55
themes, placing 47-49
tile contents, displaying 63-65
tiles, flagging 68, 69
tiles, placing on stage 56-62
timer, using 70-72

modulo (%) operator 26
MouseEvent class 27
moveHead function 129
moveHorizontally function 106
moveVertically function 105
movie clip-based games, snake

versus array-based games 117
multi dimensional array 44

[310]

N
new_piece, snake 127
no sudden death issue 72-74
numChildren property 128

O
obstacle variable 141
onAdded function 107
onEFrame function 264
onEnterFrame function 92
onEnterFr function 125, 137, 144
onEnterFrm function 192, 299, 302
onKDown function 171, 179, 258
onKeyD function 130
onMouseCk function 190
onTileClicked function 27, 35
onTime function 178
optimization

requiring 53-55

P
parkBubble function 273
placeBoard function 87
placeCannon function 248
placeContainer function 255, 268
placeDisc function 88
placeEnemy function 193
placeSnake function 120
placeSpaceship function 190
placeStuff function 133
placeTetromino function 162
playLevel function 206
point_to_watch variable 136
prepareArray function 283
prepareField function 80
Properties window 12
public functions 97
push() method 18
Puzzle Bobble game

about 245
assets, creating 246
bubble, bouncing 260, 261
bubble, firing 257-259
bubble, reloading 261, 263
bubble, stacking 263-266

bubble chains, detecting 267-271
bubble position, adjusting 261, 263
cannon, moving 247-250
cannon, placing 247-250
cannon loading, bubble used 255, 256
chain, removing 272-274
document, creating 246
game field, drawing 250, 252
game field drawing, according to

Pythagoras 254, 255
game field drawing, alternate rows used

252, 253
unlinked bubbles, removing 274-278

R
recursive functions 67
removeNotConnected function 278

S
Shift+click 44
shiftKey property 69
single dimensional arrays 44
single line comment 14
snake

about 115
array-based games versus movie clip-based

games 117
bg 120
code, simplifying 123, 124
controlling 130, 132
die function 143
field, preparing 117
FIELD_HEIGHT 120
FIELD_WIDTH 120
fruits, eating 137-139
fruits, placing 132-136
game design, defining 116, 117
getChildAt method 127, 135
getObjectsUnderPoint method 136-138
graphics, drawing 117-119
is_up function 125
justEaten varibale 139
Main function 130
making to die 142
making to grow 139, 140
manhattan_dist function 134

[311]

moveHead function 129
moving 124-130
new_piece 127
numChildren property 128
obstacle variable 141
onEnterFr function 125, 137, 144
onKeyD function 130
placeSnake function 120-123
placeStuff function 133, 134
placing 119, 120
point_to_watch variable 136
snake.fla 118, 119
snakeContainer 120
snakeDirection 120
switch statement 124
the_body variable 128
the_snake 120
the_snake_mc 118
the_snake_mc class 129
TILE_SIZE 120
walls, placing 140-142

spheres, BallBalance
dropping 288
dropping, location 284-288
floating spheres, adjusting 299-301
removing 298
stacking 292

splice method 205, 297
stage 9
stage size

550x400 11
640x480 11
setting 9

switch statement 124

T
Tetris

about 147
classes, importing 148, 149
field background, drawing 149-153
first variables, declaring 148, 149
game, terminating 179, 180
game design, defining 147
next tetromino, displaying 180-182
 tetrominoes, creating 153-156

tetrominoes
about 147
coding 156
collisions, managing 169, 170
completed lines, removing 173-175
creating 153-156
first tetromino, placing 156-160
landing, managing 166-168
moving, horizontally 161-164
moving down 164-166
programming, to fall 177, 178
remaining lines, managing 175, 176
rotating 170-173

the_body variable 128
the_snake_mc class 129
tiles, concentration

creating, steps 15, 16
placing, on stage 22-26

tiles, Minesweeper
Display List, object types 59
drawing 56
flagging 68, 69
hierarchy 60
placing, on stage 56

tileValue function 54
toolbar

creating 70, 71
two dimensional array 45

V
var odd:uint=row%2 275

W
walls, snake game

placing 140-142

X
x property 144, 145

Y
y property 192

Thank you for buying
Flash Game Development by Example

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Flash Multiplayer Virtual Worlds
ISBN: 978-1-849690-36-2 Paperback: 412 pages

Build immersive, full-featured interactive worlds for
games, online communities, and more

1. Build virtual worlds in Flash and enhance them
with avatars, non player characters, quests, and
by adding social network community

2. Design, present, and integrate the quests to the
virtual worlds

3. Create a whiteboard that every connected user
can draw on

Flash 10 Multiplayer Game
Essentials
ISBN: 978-1-847196-60-6 Paperback: 336 pages

Create exciting real-time multiplayer games
using Flash

1. A complete end-to-end guide for creating fully
featured multiplayer games

2. The author’s experience in the gaming industry
enables him to share insights on multiplayer
game development

3. Walk-though several real-time multiplayer
game implementations

4. Packed with illustrations and code snippets
with supporting explanations for ease of
understanding

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Concentration
	Defining game design
	Setting stage size, frame rate, and background color
	Welcome to Concentration ("Hello World")
	Creating the tiles
	Adding randomness: shuffling the tiles
	Placing the tiles on stage
	Picking tiles
	Checking for matching tiles
	Making the player see what happened
	Preventing the player from cheating
	Fine-tuning the game: adding educational content
	Summary
	Where to go now

	Chapter 2: Minesweeper
	Defining game design
	Creating the empty field
	Placing the mines
	Adding the digits
	Optimization needed
	Placing tiles on stage
	Showing tile contents
	Auto showing adjacent empty tiles
	Flagging tiles
	Timer and game over
	No sudden death
	Summary
	Where to go now

	Chapter 3: Connect Four
	Defining game design
	The game field
	Showing smooth animations
	Splitting the code
	Adding the board
	Placing the board to stage
	Creating more classes
	Placing the disc
	Moving the disc
	Applying game rules
	Checking for possible columns
	It's raining discs
	Determining a cell value (if any)
	Making your move
	Waiting for the disc to be added to stage
	Checking for victory
	Animating discs
	The animation itself
	Making computer play
	Unleashing CPU power
	Playing with AI: defensive play
	Summary
	Where to go now

	Chapter 4: Snake
	Defining game design
	Array-based games versus Movie Clip-based games
	Preparing the field
	Drawing the graphics
	Placing the snake
	The snake itself
	Simplifying the code
	Letting the snake move
	Controlling the snake
	Placing fruits
	Eating fruits
	Making the snake grow
	Placing walls
	Making the snake die
	Summary
	Where to go now

	Chapter 5: Tetris
	Defining game design
	Importing classes and declaring first variables
	Drawing game field background
	Drawing a better game field background
	Creating the tetrominoes
	Placing your first tetromino
	Moving tetrominoes horizontally
	Moving tetrominoes down
	Managing tetrominoes landing
	Managing tetrominoes collisions
	Rotating tetrominoes
	Removing completed lines
	Managing remaining lines
	Making tetrominoes fall
	Checking for game over
	Showing NEXT tetromino
	Summary
	Where to go now

	Chapter 6: Astro-PANIC!
	Defining game design
	Creating the game and drawing the graphics
	Adding and controlling the spaceship
	Adding a glow filter
	Making spaceship fire
	Making the bullet fly
	Adding enemies
	Moving enemies
	Being killed by an enemy
	Killing an enemy
	Killing an enemy—for good
	Killing an enemy—with style
	Advancing levels
	Managing current score and high score
	Saving data on your local computer
	Summary
	Where to go now

	Chapter 7: Bejeweled
	Creating documents and objects
	Placing the gems
	Placing the gems for real
	Selecting a gem
	Preparing to swap gems
	Swapping gems
	Swapping gems for real
	Selecting which gems to remove
	Removing gems
	Making gems fall
	Adding new gems
	Dealing with combos
	Giving hints
	Summary
	Where to go now

	Chapter 8: Puzzle Bobble
	Creating document and assets
	Placing and moving the cannon
	Drawing the game field
	Drawing the game field with alternate rows
	Drawing the game field according to Pythagoras
	Loading the cannon with a bubble
	Firing the bubble
	Letting bubble bounce and stop
	Adjusting bubble position and reloading
	Allowing bubbles to stack
	Detecting bubble chains
	Removing the chain
	Removing unlinked bubbles
	Summary
	Where to go now

	Chapter 9: BallBalance
	Creating files and assets
	Adding the balance
	Choosing where to drop spheres
	Dropping the spheres
	Stacking spheres
	Removing spheres
	Adjusting floating spheres
	Moving the balance
	Summary
	Where to go now

	Appendix: Where to Go Now
	Index

